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Common Fixed Point Problems

T1, . . . ,Tm : α-averaged operators (α ∈ (0, 1))

find x ∈ F :=
m⋂
i=1

FixTi , (CFP)

A particular case is when Ti = PCi so that

find x ∈ F :=
m⋂
i=1

Ci , (CFP)

There are many methods for both
problems.

Figure: Cyclic projections

Do these methods converge?
Typically yes, because of
convexity

How fast do they converge?
Depends on the kind of
regularity property that holds
between operators
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Regularity properties

Hölderian error bound

C1,C2 satisfy a uniform Hölderian error bound
def⇐⇒ there exists γ ∈ (0, 1] such that for every

bounded set B there exist θB > 0

dist (x,C1 ∩ C2) ≤ θB max
1≤i≤2

dist
γ(x, Ci ) ∀ x ∈ B.

If γ = 1, we call it a Lipschitzian error bound.

Hölder regularity

T is uniformly Hölder regular
def⇐⇒ there exists γ ∈ (0, 1] such that for every bounded set B

there exist θB > 0
dist (x,FixT ) ≤ θB‖x − Tx‖γ ∀ x ∈ B.

Lipschtizian (regularity + error bound) =⇒ dist (xk
, F ) ≤ Mθk (Linear convergence)

Hölder (regularity + error bound) =⇒ dist (xk
, F ) ≤ Mk−α(Sublinear convergence)

J. M. Borwein, G. Li, and M. K. Tam.

Convergence rate analysis for averaged fixed point iterations in common fixed point
problems.

SIAM Journal on Optimization, 27(1):1–33, 2017.
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The exponential cone

Kexp :=
{

(x , y , z) | y > 0, z ≥ yex/y
}
∪ {(x , y , z) | x ≤ 0, z ≥ 0, y = 0} .

1 Applications to entropy optimization, logistic regression, geometric
programming and etc.

2 Available in Alfonso, DDS, Hypatia, Mosek, SCS, ....
https://docs.mosek.com/modeling-cookbook/expo.html.

V. Chandrasekaran, P. Shah

Relative entropy optimization and its applications.

Math. Program. 161, 2017

Scott B. Lindstrom; L and Ting Kei Pong

Error bounds, facial residual functions and applications to the exponential cone

Math. Program., 2023
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Beyond Hölderian regularity - Exotic error bounds

1 If C1 = Kexp, C2 = {(0, 1, 0)}⊥, the error bound is of the form

dist (x ,C1 ∩ C2) ≤ κBg−∞( max
1≤i≤2

{dist (x ,Ci )})

where

g−∞(t) := −t ln(t), (for t small)

This is an entropic error bound.

2 If C1 = Kexp, C2 = {(0, 0, 1)}⊥, the error bound is of the form

dist (x ,C1 ∩ C2) ≤ κBg∞( max
1≤i≤2

{dist (x ,Ci )})

where

g∞(t) := − 1

ln(t)
, (for t small)

This is an logarithmic error bound.

3 Sets having exponentials and logarithms may have exotic error bounds.
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Our goals

1 Prove convergence rates for algorithms for common fixed point problems in a
context as general as possible.

2 Rates should be concrete: dist (xk ,F ) ≤ R(k), for a “reasonable” function R.

T. Liu and L.

Convergence analysis under consistent error bounds

Foundations of Computational Mathematics Vol. 24, 2024, pp. 429-479

T. Liu and L.

Concrete convergence rates for common fixed point problems under Karamata
regularity

https://arxiv.org/abs/2407.13234.
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Regular Variation (Karamata Theory)

Figure: Jovan Karamata (1902–1967) - pioneer of regularly varying functions. Photo
from wikipedia.

N. H. Bingham, C. M. Goldie, and J. L. Teugels.

Regular Variation.

Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1987.

E. Seneta.

Regularly Varying Functions.

Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1976.
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Functions of regular variation

f : [a,∞)→ (0, ∞) is regularly varying at ∞ with index ρ if

lim
x→∞

f (λx)

f (x)
= λρ, λ > 0.

In this case we write f ∈ RVρ

f : (0, a]→ (0, ∞) is regularly varying at 0 with index ρ if

lim
x→0+

f (λx)

f (x)
= λρ, λ > 0.

In this case we write f ∈ RV0
ρ

Examples of RV0 functions:

tα has index α

−t ln(t) has index 1.

− 1
ln(t)

has index 0.

−
√
t ln(t) has index 1/2.

Non-example: e−1/t .
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Helpful properties of regular variation

Asymptotic equivalence up to a constant

f (t)
c∼ h(t) as t → a

def⇐⇒ limt→a
f (t)
h(t)

= µ > 0

For f ∈ RVρ, ρ > −1∫ x

a

f (t)dt ∼ x

ρ+ 1
f (x) as x →∞.

For f , h ∈ RVρ, ρ > 0

f (t)
c∼ h(t) as t →∞ ⇒ f −1(t)

c∼ h−1(t) as t →∞

f (t) = o(h(t)) as t →∞ ⇒ h−1(t) = o(f −1(t)) as t →∞
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Karamata regularity

Joint Karamata regularity

Ti : operators with F :=
⋂m

i=1 FixTi 6= ∅
B: bounded subset

The Ti are jointly Karamata regular (JKR) over B if there exists
ψB : IR+ → IR+ such that.

(i) dist (x ,F ) ≤ ψB

(
max1≤i≤n ‖x − Ti (x)‖

)
, ∀ x ∈ B.

(ii) ψB is nondecreasing and limt→0+ ψB(t) = ψB(0) = 0.

(iii) ψB ∈ RV0
ρ with ρ ∈ [0, 1].

Encompasses Hölderian error bounds, Hölder regular operators and all the
previous examples of non-Hölder behavior.
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Consistent error bounds

C1, . . . ,Cm ⊆ Rn: closed convex sets
C = ∩m

i=1Ci .

Consistent error bound functions - Liu, L.’ 24

ψ : R+ × R+ → R+ is a consistent error bound function for C1, . . . ,Cm if:

(i)

dist (x ,C) ≤ ψ
(

max
1≤i≤m

dist (x ,Ci ), ‖x‖
)
∀ x ∈ Rn;

(ii) ∀b ≥ 0, ψ(·, b) is monotone nondecreasing, right-continuous at 0 and
ψ(0, b) = 0;

(iii) ∀a ≥ 0, ψ(a, ·) is monotone nondecreasing.

If ψ(·, b) ∈ RV0
ρ, CEBs become a particular case of Karamata regularity.
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Main convergence result

T1, . . . ,Tm: JKR α-averaged operators (α ∈ (0, 1)). F :=
⋂m

i=1 FixTi 6= ∅.
{xk}: sequence generated by some reasonable algorithm.
ψB : regularity function over a bounded set B containing {xk}

Define φ(u) := ψ2
B(
√
κu)

Φφ(u) :=

∫ 1

u

1

φ−(t)
dt, u > 0.

Then, the convergence of {xk} to x∗ ∈ F is either finite or ∃τ > 0,

dist (xk , F ) ≤
√

(Φφ)−1
(
L− τk

)
∀ k,

where L = Φφ
(
dist 2

(
x0, F

))
.
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Gee... that looks like hard to compute. How practical is that?

It isn’t. :(
But regular variation helps bypass most of the misery and pain.

Index of regular variation and convergence rates - Liu, L.’24

Let ρ denote the index of ψB .
1 ρ = 1 ⇒ convergence rate is almost linear.

i.e., faster than k−r for any r > 0.

2 ρ ∈ (0, 1) ⇒ convergence rate almost the same of as being Hölder with
exponent ρ.

i.e., faster than k−r/2 for any r > 0 such that r < ρ/(1− ρ).

3 ρ = 0 ⇒ k−r = o(Φ−1
φ (k)) as k →∞, i.e., Φ−1

φ (k) goes to 0 slower than
any sublinear rate.

If ψB is logarithmic, the rate is 1
ln(k)

.

Reminder: f has index ρ
def⇐⇒ limx→0+

f (λx)
f (x)

= λρ, λ > 0.
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Better rates with more effort

f ∈ RV0
ρ with ρ ∈ [0, 1], nondecreasing with limx→0+ f (x) = 0.

Φf (x) :=

∫ 1

x

1

f −(t)
dt, x > 0,

Let g(x) := 1
xf−(1/x)

Better rates - Liu, L.’24

1 ρ = 1 and f (t)
c∼ t as t → 0+ ⇒ τ1c

s
1 ≤ Φ−1

f (s) ≤ τ2c
s
2 whenever s is

large enough.

2 ρ = 1 and t = o(f (t)) as t → 0+ ⇒ Φ−1
f (s) = 1

o(g←(s))
as s →∞.

3 ρ ∈ (0, 1) ⇒ Φ−1
f (s)

c∼ 1
g←(s)

as s →∞
4 ρ = 0 and ln(g) ∈ RVq with q > 0 ⇒ then for ĝ(x) := xg(x) = 1

f−(1/x)
,

we have Φ−1
f (s) ∼ 1

ĝ←(s)
as s →∞.
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Entropic error bound (−t ln t)

find p ∈ Kexp ∩ {(0, 1, 0)}⊥

Consider the cyclic projections algorithm. Starting point is (1, 1, 1). Theory
says the convergence is almost linear.

(a) Log-log plot of

dist (pk ,Kexp ∩ {(0, 1, 0)}⊥). Dashed and

dotted lines correspond to k−r for a few values
of r .

(b) Plot of dist (pk ,Kexp ∩ {(0, 1, 0)}⊥),
where only the y -axis is in log scale. Functions
of the form c−k appear as straight lines.

√
kc−

√
k = o

(√
Φ−1
φ (k)

)
as s →∞.
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Logarithmic error bound (− 1
ln t )

find p ∈ Kexp ∩ {(0, 0, 1)}⊥

Consider the cyclic projections algorithm. Starting point is (1, 1, 1). Theory
says the convergence is logarithmic.

Figure: Log-log plot of dist (pk ,Kexp ∩ {(0, 1, 0)}⊥). Dashed and dotted lines
correspond to k−r for a few values of r .
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A Douglas-Rachford example

We constructed two sets C1,C2 for which TDR satisfies:

dist
(
w , FixTDR

)
≤ κψB

(
‖TDR(w)− w‖

)
,

with

ψB(t) = −
√
t ln(t), (for t small)

and ψB ∈ RV0
1/2 is the “best” possible regularity function.

Bounds for the convergence rate of {w k} generated by DR:

Faster than k−r/2 for any r<1.√
Φ−1
φ (k)

c∼
[
W0(
√
k)
]2
k−1/2 as s →∞.

17 / 19



Intro Regular variation and Karamata regularity Convergence results Application to the exponential cone A connection to o-minimal structures

Definable operators and joint Karamata regularity

Pick your favourite o-minimal structure: semialgebraic sets, global
subanalytic sets, log-exp structure...

If

T1, . . . ,Tm are definable continuous quasi-nonexpansive operators with
F :=

⋂m
i=1 FixTi 6= ∅;

B is a bounded set

then

T1, . . . ,Tm are jointly Karamata regular.

Error bounds between definable convex sets can always be described by
regularly varying functions.

Definable convex sets admit consistent error bound functions that are
regularly varying.
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Conclusion

1 Joint Karamata regularity:

dist (x ,F ) ≤ ψB

(
max1≤i≤n ‖x − Ti (x)‖

)
, ∀ x ∈ B.

2 Convergence rates: dist (xk , F ) ≤
√

(Φφ)−1
(
L− τk

)
, where

Φφ(u) :=
∫ 1
u

1
φ−(t)

dt and φ(u) := ψ2
B(
√
κu).

3 (Φφ)−1 is hard to compute, but asymptotic analysis can be done with
regular variation. (index is easy to compute)

Concrete convergence rates for exotic regularity.

T. Liu and L.
Convergence analysis under consistent error bounds
Foundations of Computational Mathematics Vol. 24, 2024, pp. 429-479

T. Liu and L.
Concrete convergence rates for common fixed point problems under
Karamata regularity
https://arxiv.org/abs/2407.13234.
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