Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	00

Exotic error bounds, Karamata theory and convergence rate analysis

Bruno F. Lourenço Institute of Statistical Mathematics, Japan Joint work with Tianxiang Liu (Tokyo Institute of Technology)

24th of July of 2024

			000	00
00000	Regular variation and Raramata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures

Common Fixed Point Problems

 T_1, \ldots, T_m : α -averaged operators ($\alpha \in (0, 1)$)

find
$$x \in F := \bigcap_{i=1}^{m} \operatorname{Fix} T_i$$
, (CFP)

A particular case is when $T_i = P_{C_i}$ so that

find
$$x \in F := \bigcap_{i=1}^{m} C_i$$
, (CFP)

There are many methods for both problems.

Figure: Cyclic projections

- Do these methods converge? Typically yes, because of convexity
- How fast do they converge?
 Depends on the kind of regularity property that holds between operators

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	00
Regu	larity properties			

Hölderian error bound

C₁, C₂ satisfy a uniform Hölderian error bound $\stackrel{\text{def}}{\iff}$ there exists $\gamma \in (0, 1]$ such that for every bounded set B there exist $\theta_B > 0$

dist
$$(x, C_1 \cap C_2) \leq \theta_B \max_{1 \leq i \leq 2} \operatorname{dist}^{\gamma}(x, C_i) \quad \forall x \in B.$$

If $\gamma = 1$, we call it a **Lipschitzian** error bound.

Hölder regularity

T is uniformly Hölder regular $\stackrel{\text{def}}{\iff}$ there exists $\gamma \in (0, 1]$ such that for every bounded set *B* there exist $\theta_B > 0$

dist $(x, \operatorname{Fix} T) \leq \theta_B ||x - Tx||^{\gamma} \quad \forall x \in B.$

Lipschtizian (regularity + error bound) $\implies \text{dist}(x^k, F) \leq M\theta^k$ (Linear convergence)

Hölder (regularity + error bound) $\implies dist(x^k, F) \le Mk^{-\alpha}$ (Sublinear convergence)

J. M. Borwein, G. Li, and M. K. Tam.

Convergence rate analysis for averaged fixed point iterations in common fixed point problems.

SIAM Journal on Optimization, 27(1):1-33, 2017.

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	00
The	exponential cone			

$$\mathcal{K}_{\exp} := \left\{ (x, y, z) \mid y > 0, z \ge y e^{x/y}
ight\} \cup \{ (x, y, z) \mid x \le 0, z \ge 0, y = 0 \}.$$

- Applications to entropy optimization, logistic regression, geometric programming and etc.
- Available in Alfonso, DDS, Hypatia, Mosek, SCS, https://docs.mosek.com/modeling-cookbook/expo.html.


```
V. Chandrasekaran, P. Shah
```

Relative entropy optimization and its applications. Math. Program. 161, 2017

Scott B. Lindstrom; L and Ting Kei Pong

Error bounds, facial residual functions and applications to the exponential cone Math. Program., 2023

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structu
00000	00000	000	000	00

Beyond Hölderian regularity - Exotic error bounds

If $C_1 = K_{exp}$, $C_2 = \{(0, 1, 0)\}^{\perp}$, the error bound is of the form

$$\operatorname{dist}(x, \mathsf{C}_1 \cap \mathsf{C}_2) \leq \kappa_B \mathfrak{g}_{-\infty}(\max_{1 \leq i \leq 2} \{\operatorname{dist}(x, \mathsf{C}_i)\})$$

where

$$\mathfrak{g}_{-\infty}(t) := -t \ln(t), \quad \text{(for } t \text{ small)}$$

This is an entropic error bound.

3 If $C_1 = K_{exp}$, $C_2 = \{(0,0,1)\}^{\perp}$, the error bound is of the form

$$\operatorname{dist}(x, C_1 \cap C_2) \leq \kappa_B \mathfrak{g}_{\infty}(\max_{1 \leq i \leq 2} \{\operatorname{dist}(x, C_i)\})$$

where

$$\mathfrak{g}_\infty(t):=-rac{1}{\ln(t)},\qquad ext{(for }t ext{ small)}$$

This is an logarithmic error bound.

Sets having exponentials and logarithms may have exotic error bounds.

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	00
Our	goals			

Prove convergence rates for algorithms for common fixed point problems in a context as general as possible.

2 Rates should be concrete: dist $(x^k, F) \leq R(k)$, for a "reasonable" function R.

T. Liu and L.

Convergence analysis under consistent error bounds Foundations of Computational Mathematics Vol. 24, 2024, pp. 429-479

T. Liu and L.

Concrete convergence rates for common fixed point problems under Karamata regularity

https://arxiv.org/abs/2407.13234.

Intro Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures	
00000 00000	000	000	00	
Regular Variation (Karamata Theory)				

Figure: Jovan Karamata (1902–1967) - pioneer of regularly varying functions. Photo from wikipedia.

N. H. Bingham, C. M. Goldie, and J. L. Teugels.

Regular Variation.

Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1987.

E. Seneta.

Regularly Varying Functions.

Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1976.

Intro	Regular var	iation and K	aramata regi	ularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000				000	000	00
-		c					

Functions of regular variation

 $f: [a, \infty) \to (0, \infty)$ is regularly varying at ∞ with index ρ if

$$\lim_{n\to\infty}rac{f(\lambda x)}{f(x)}=\lambda^
ho,\quad\lambda>0.$$

In this case we write $f \in \mathrm{RV}_{\rho}$

 $f:(0,a] \rightarrow (0,\infty)$ is regularly varying at 0 with index ρ if

$$\lim_{x\to 0_+}\frac{f(\lambda x)}{f(x)}=\lambda^\rho,\quad \lambda>0.$$

In this case we write $f \in \mathrm{RV}^0_\rho$

Examples of RV^0 functions:

- t^{α} has index α
- $-t \ln(t)$ has index 1.

• $-\frac{1}{\ln(t)}$ has index 0. • $-\sqrt{t}\ln(t)$ has index 1/2.

Non-example: $e^{-1/t}$.

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	00

Helpful properties of regular variation

Asymptotic equivalence up to a constant

$$f(t) \stackrel{c}{\sim} h(t) ext{ as } t
ightarrow a \stackrel{ ext{def}}{\Longleftrightarrow} \lim_{t
ightarrow a} rac{f(t)}{h(t)} = \mu > 0$$

• For
$$f \in \mathrm{RV}_{\rho}, \rho > -1$$

$$\int_a^x f(t)dt \sim rac{x}{
ho+1}f(x) ext{ as } x o \infty.$$

• For
$$f, h \in \mathrm{RV}_{\rho}, \rho > 0$$

 $f(t) \stackrel{c}{\sim} h(t) \text{ as } t \to \infty \Rightarrow f^{-1}(t) \stackrel{c}{\sim} h^{-1}(t) \text{ as } t \to \infty$
 $f(t) = o(h(t)) \text{ as } t \to \infty \Rightarrow h^{-1}(t) = o(f^{-1}(t)) \text{ as } t \to \infty$

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	00
Kara	mata regularity			

Joint Karamata regularity

- T_i : operators with $F := \bigcap_{i=1}^m \operatorname{Fix} T_i \neq \emptyset$
- B: bounded subset

The T_i are jointly Karamata regular (JKR) over B if there exists $\psi_B : \mathbb{R}_+ \to \mathbb{R}_+$ such that.

 \emptyset ψ_B is nondecreasing and $\lim_{t\to 0_+} \psi_B(t) = \psi_B(0) = 0$.

- - Encompasses Hölderian error bounds, Hölder regular operators and all the previous examples of non-Hölder behavior.

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	00
Cons	istent error bounds			

$C_1, \ldots, C_m \subseteq \mathbb{R}^n$: closed convex sets $C = \bigcap_{i=1}^m C_i$.

Consistent error bound functions - Liu, L.' 24

 $\psi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is a consistent error bound function for C_1, \ldots, C_m if:

$$\operatorname{dist}(x,C) \leq \psi\left(\max_{1 \leq i \leq m} \operatorname{dist}(x,C_i), \|x\|\right) \quad \forall \ x \in \mathbb{R}^n;$$

- Ø ∀b ≥ 0, ψ(·, b) is monotone nondecreasing, right-continuous at 0 and ψ(0, b) = 0;
- $@ \forall a \geq 0, \ \psi(a, \cdot)$ is monotone nondecreasing.

• If $\psi(\cdot, b) \in \mathrm{RV}^0_{\rho}$, CEBs become a particular case of Karamata regularity.

Intro	Regular variation and Karamata regularity	€00	Application to the exponential cone	A connection to o-minimal structures
00000	00000	€00		OO
Mair	convergence result			

 T_1, \ldots, T_m : JKR α -averaged operators ($\alpha \in (0, 1)$). $F := \bigcap_{i=1}^m \operatorname{Fix} T_i \neq \emptyset$. { x^k }: sequence generated by some **reasonable** algorithm. ψ_B : regularity function over a bounded set *B* containing { x^k }

Define $\phi(u) \coloneqq \psi_B^2(\sqrt{\kappa u})$

$$\Phi_{\phi}(u) := \int_{u}^{1} \frac{1}{\phi^{-}(t)} dt, \ u > 0.$$

Then, the convergence of $\{x^k\}$ to $x^* \in F$ is either finite or $\exists \tau > 0$,

dist
$$(x^k, F) \leq \sqrt{(\Phi_{\phi})^{-1} (L - \tau k)} \quad \forall k,$$

where $L = \Phi_{\phi} \left(\operatorname{dist}^{2} \left(x^{0}, F \right) \right)$.

Gee... that looks like hard to compute. How practical is that?

lt isn't. :(

But regular variation helps bypass most of the misery and pain.

Index of regular variation and convergence rates - Liu, L.'24

Let ρ denote the index of ψ_B .

- $\rho = 1 \Rightarrow$ convergence rate is almost linear.
 - i.e., faster than k^{-r} for any r > 0.

• i.e., faster than $k^{-r/2}$ for any r > 0 such that $r < \rho/(1-\rho)$.

◎ $\rho = 0 \Rightarrow k^{-r} = o(\Phi_{\phi}^{-1}(k))$ as $k \to \infty$, i.e., $\Phi_{\phi}^{-1}(k)$ goes to 0 slower than any sublinear rate.

• If
$$\psi_B$$
 is logarithmic, the rate is $\frac{1}{\ln(k)}$.

 $\text{Reminder: } f \text{ has index } \rho \ \stackrel{\text{def}}{\Longleftrightarrow} \ \lim_{x \to 0_+} \frac{f(\lambda x)}{f(x)} = \lambda^{\rho}, \quad \lambda > 0.$

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures	
00000	00000	000	000	00	

Better rates with more effort

 $f \in \mathrm{RV}^0_{\rho}$ with $\rho \in [0, 1]$, nondecreasing with $\lim_{x \to 0_+} f(x) = 0$.

$$\Phi_f(x):=\int_x^1\frac{1}{f^-(t)}dt, \ x>0,$$

Let $g(x) := \frac{1}{xf^-(1/x)}$

Better rates - Liu, L.'24

• $\rho = 1$ and $f(t) \sim t$ as $t \to 0_+ \Rightarrow \tau_1 c_1^s \leq \Phi_f^{-1}(s) \leq \tau_2 c_2^s$ whenever s is large enough.

$$\ \, {\color{black} 0} \ \, \rho=1 \ \, \text{and} \ \, t=o(f(t)) \ \, \text{as} \ \, t\to 0_+ \Rightarrow \Phi_f^{-1}(s)=\frac{1}{o(g^{\leftarrow}(s))} \ \, \text{as} \ \, s\to\infty.$$

$$\begin{array}{l} \bullet \hspace{0.5cm} \rho \in (0,1) \Rightarrow \Phi_{f}^{-1}(s) \overset{c}{\sim} \frac{1}{g^{\leftarrow}(s)} \text{ as } s \to \infty \\ \bullet \hspace{0.5cm} \rho = 0 \hspace{0.5cm} \text{and} \hspace{0.5cm} \ln(g) \in \mathrm{RV}_{q} \hspace{0.5cm} \text{with} \hspace{0.5cm} q > 0 \Rightarrow \text{then for } \widehat{g}(x) \coloneqq xg(x) = \frac{1}{f^{-}(1/x)}, \\ \text{ we have } \Phi_{f}^{-1}(s) \sim \frac{1}{\widehat{g^{\leftarrow}(s)}} \hspace{0.5cm} \text{as } s \to \infty. \end{array}$$

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures	
00000	00000	000	● O O	00	
Entropic error bound $(-t \ln t)$					

find $p \in K_{exp} \cap \{(0,1,0)\}^{\perp}$

Consider the cyclic projections algorithm. Starting point is (1, 1, 1). Theory says the convergence is **almost linear**.

(a) Log-log plot of

 $\begin{array}{ll} \operatorname{dist}(p^k, K_{\exp} \cap \{(0,1,0)\}^{\perp}). \text{ Dashed and} \\ \operatorname{dotted lines correspond to } k^{-r} \text{ for a few values} \end{array} (b) \ \text{Plot of } \operatorname{dist}(p^k, K_{\exp} \cap \{(0,1,0)\}^{\perp}), \\ \operatorname{dotted lines correspond to } k^{-r} \text{ for a few values} \end{array} (b) \ \text{values only the } y\text{-axis is in log scale. Functions} \\ \operatorname{of } r. \end{array} (b) \ \text{Plot of } \operatorname{dist}(p^k, K_{\exp} \cap \{(0,1,0)\}^{\perp}), \\ \operatorname{dotted lines correspond to } k^{-r} \text{ for a few values} \\ \operatorname{of } r. \end{array} (b) \ \text{Plot of } \operatorname{dist}(p^k, K_{\exp} \cap \{(0,1,0)\}^{\perp}), \\ \operatorname{dotted lines correspond to } k^{-r} \text{ for a few values} \\ \operatorname{dist}(p^k, K_{\exp} \cap \{(0,1,0)\}^{\perp}), \\ \operatorname{dist}(p^k, K_{\exp} \cap \{(0,1,0)\}^{\perp}),$

$$\sqrt{k}c^{-\sqrt{k}} = o\left(\sqrt{\Phi_{\phi}^{-1}(k)}\right) \quad \mathrm{as} \quad s \to \infty.$$

find $p \in K_{exp} \cap \{(0,0,1)\}^{\perp}$

Consider the cyclic projections algorithm. Starting point is (1, 1, 1). Theory says the convergence is **logarithmic**.

Figure: Log-log plot of dist $(p^k, K_{exp} \cap \{(0, 1, 0)\}^{\perp})$. Dashed and dotted lines correspond to k^{-r} for a few values of r.

Intro Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures		
00000 00000	000	000	00		
A Douglas-Rachford example					

• We constructed two sets C_1 , C_2 for which $T_{\rm DR}$ satisfies:

$$\operatorname{dist}\left(w, \operatorname{Fix} \mathcal{T}_{\operatorname{DR}}\right) \leq \kappa \psi_{B} \Big(\left\| \mathcal{T}_{\operatorname{DR}}(w) - w \right\| \Big),$$

with

$$\psi_B(t) = -\sqrt{t} \ln(t),$$
 (for t small)

and $\psi_B \in \mathrm{RV}^0_{1/2}$ is the "best" possible regularity function.

Bounds for the convergence rate of $\{w^k\}$ generated by DR:

• Faster than $k^{-r/2}$ for any r < 1.

•
$$\sqrt{\Phi_{\phi}^{-1}(k)} \stackrel{c}{\sim} \left[W_0(\sqrt{k}) \right]^2 k^{-1/2} \text{ as } s \to \infty.$$

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	•0

Definable operators and joint Karamata regularity

- Pick your favourite *o*-minimal structure: semialgebraic sets, global subanalytic sets, log-exp structure...
- lf
- T_1, \ldots, T_m are definable continuous quasi-nonexpansive operators with $F := \bigcap_{i=1}^m \operatorname{Fix} T_i \neq \emptyset$;
- B is a bounded set

then

 T_1, \ldots, T_m are jointly Karamata regular.

- Error bounds between definable convex sets can always be described by regularly varying functions.
- Definable convex sets admit consistent error bound functions that are regularly varying.

Intro	Regular variation and Karamata regularity	Convergence results	Application to the exponential cone	A connection to o-minimal structures
00000	00000	000	000	0•
Conclusion				

Joint Karamata regularity:

dist
$$(x, F) \leq \psi_B \Big(\max_{1 \leq i \leq n} \|x - T_i(x)\| \Big), \quad \forall x \in B.$$

② Convergence rates: dist
$$(x^k, F) \leq \sqrt{(\Phi_{\phi})^{-1}(L - \tau k)}$$
, where $\Phi_{\phi}(u) := \int_u^1 \frac{1}{\phi^{-}(t)} dt$ and $\phi(u) := \psi_B^2(\sqrt{\kappa u})$.

- **(** Φ_{ϕ})⁻¹ is hard to compute, but asymptotic analysis can be done with **regular variation**. (index is **easy** to compute)
- Concrete convergence rates for exotic regularity.

T. Liu and L.

Convergence analysis under consistent error bounds Foundations of Computational Mathematics Vol. 24, 2024, pp. 429-479

T. Liu and L.

Concrete convergence rates for common fixed point problems under Karamata regularity

https://arxiv.org/abs/2407.13234.