Introduction
00000000

Double facial reduction 000000

An example 00000000

Completely solving general SDPs

Bruno F. Lourenço ISM

November 27th, 2021 T60 Joint work with Masakazu Muramatsu and Takashi Tsuchiya

Introduction	Facial reduction	Double facial reduction	An example
0000000	0000	000000	00000000
SDPs			

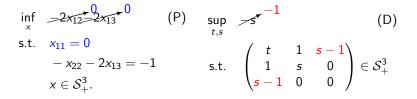
How to solve SDPs in general?

B. F. Lourenço, M. Muramatsu, and T. Tsuchiya, Solving SDP completely with an interior point oracle Optimization Methods and Software, 36 (2021), pp. 425–471. Introduction 0000000 Facial reduction

Double facial reduction 000000

An example 00000000

Strange behaviour 1 - Duality gaps



 $\theta_D = -1$ and $\theta_P = 0$.

Introduction 00000000 Facial reduction

Double facial reduction

An example 00000000

Strange behaviour 2 - Non-attainment

 $\begin{aligned} \sup_{t,s} & -s & (D) \\ \text{s.t.} & \begin{pmatrix} t & 1 \\ 1 & s \end{pmatrix} \in \mathcal{S}^2_+ \end{aligned}$

 Introduction
 Facial reduction
 Double facial reduction

 0000000
 00000
 000000

An example 00000000

Strange behaviour 3 - Weak infeasibility

$$\sup_{t,s} t (D)$$
s.t. $\begin{pmatrix} t & 1\\ 1 & 0 \end{pmatrix} \in S^2_+$

• Let
$$V = \{c - \mathcal{A}^* y \mid y \in \mathbb{R}^n\}$$

- In general, (D) feasible $\Rightarrow \operatorname{dist}(V, \mathcal{S}^n_+) = 0$
- Here, we have $dist(V, \mathcal{S}^n_+) = 0$, but (D) is infeasible.

Introduction
00000000

Double facial reduction

An example 00000000

Multiple things at the same time

$$\begin{split} \sup_{y \in \mathbb{R}^8} & -y_4 - 2y_6 - 2y_7 & \text{(D)} \\ \text{s.t.} & & & \\ \begin{pmatrix} y_1 & & & & y_3 - 1 \\ y_1 & & & & y_5 - 1 \\ & y_2 & y_3 & & & & \\ & & y_3 & y_4 - y_5 & & & \\ & & & & y_4 & -0.5y_8 + 0.5 & y_6 & \\ & & & & & -0.5y_8 + 0.5 & y_8 & y_7 & \\ & & & & & & y_6 & y_7 & 0 & \\ y_3 - 1 & y_5 - 1 & & & & 0 \\ \end{split} \right) \in \mathcal{S}^8_+. \end{split}$$

• $\theta_D = -1$, $\theta_P = 0$ and neither are attained.

Introduction 00000000 Facial reduction

Double facial reduction

An example 00000000

How to solve SDPs in general?

- IPMs? Some first order method? Probably won't work if there is positive duality gap or non-attainment
- What if we try to regularize the SDP via *facial reduction* or something?
 - It only fixes one side of the problem.

It is very hard to solve general SDPs! Even in low-dimensions and with apparently harmless data...

Introduction
00000000

Double facial reduction 000000 An example 00000000

Ok, so which SDPs can we actually solve?

- If (P) and (D) **both** have interior points, then $\theta_P = \theta_D$ and are attained.
 - We have a decent chance of actually solving (P) and (D) with IPMs, augmented Lagrangian and etc.

The interior point oracle \mathcal{O}_{int}

Input: The problem data: A, b, c. Both (P) and (D) must have interior points.

Output: A primal-dual optimal solution pair x^* , y^* .

Introduction
0000000

Double facial reduction

An example 00000000

The main result

Completely solving SDPs

Any SDP can be completely solved via polynomially (in *n*) many calls to $\mathcal{O}_{\rm int}$

Completely solving (D) entails the following.

- Deciding feasibility and infeasibility.
 - In case of infeasibility, distinguishing between weak and strong infeasibility.
- Computing the optimal value
 - If attained, we also want an optimal solution.
 - If not, we compute an ϵ -optimal solution for any $\epsilon > 0$.
 - We also want to detect unboundedness.

Next we describe our tools: facial reduction and double facial reduction.

Introduction	Facial reduction	Double facial reduction	An example
0000000	0000	000000	0000000
Facial Red	uction Basics		

$$\sup_{y} \langle b, y \rangle \tag{D}$$
 subject to $c - \mathcal{A}^* y \in \mathcal{S}^n_+,$

Let \mathcal{F}_{D} denote the feasible slacks of (D), $\mathcal{F}_{\mathsf{D}} = \{S \in \mathcal{S}^n_+ \mid \exists y, c - \mathcal{A}^* y\}$

- If \mathcal{F}_D has no interior point of \mathcal{S}^n_+ then \mathcal{F}_D lies on a proper face of \mathcal{S}^n_+
- The smallest such face $\mathcal{F} \trianglelefteq \mathcal{S}^n_+$ contains \mathcal{F}_D and

 $\mathcal{F}_{\mathsf{D}} \ \cap \mathrm{ri}\, \mathcal{F} \neq \emptyset.$

- Replacing S_+^n by \mathcal{F} leads to a **smaller equivalent** problem that has an interior point!
 - J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.

Journal of Mathematical Analysis and Applications, 83(2):495 – 530, 1981.

Introduction	Facial reduction	Double facial reduction	An example
0000000	0000	000000	0000000
More about fa	cial reduction		

More about facial reduction

• If $(c + \operatorname{range} \mathcal{A}^*) \cap \operatorname{ri} \mathcal{S}^n_+ = \emptyset$, we find a hyperplane $\{d\}^{\perp}$ that properly separates both, with $d \in \mathcal{S}^n_+$.

• Then, we replace \mathcal{S}^n_+ by $\mathcal{S}^n_+ \cap \{d\}^\perp$ and repeat. Example:

$$\begin{pmatrix} t & 1 & s - 1 \\ 1 & s & 0 \\ s - 1 & 0 & 0 \end{pmatrix} \in \mathcal{S}^3_+$$

We can let $d = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Introduction
00000000

Double facial reduction

An example 00000000

Facial reduction and \mathcal{O}_{int}

Theorem

Through O(n) calls to \mathcal{O}_{int} we can either detect that (D) is infeasible or find an equivalent SDP that has an interior point at the dual side.

Key idea: d can be found by solving by successively using \mathcal{O}_{int} to solve

$\inf_{x,t,v}$	v t		(<i>P</i> _K)
subject to	$-\langle c, x-te^* angle +t-w$	= 0	(1)
	$\langle e, x \rangle + w$	= 1	(2)
	$\mathcal{A}x-t\mathcal{A}e^{*}$	= 0	(3)
	$(x,t,w)\in \mathcal{K}^* imes \mathbb{R}_+ imes \mathbb{R}_+$		
sup _{y1,y2,y3}	<i>Y</i> 2		(<i>D</i> _℃)
subject to	$\textit{cy}_1 - \textit{ey}_2 - \mathcal{A}^*\textit{y}_3 \in \mathcal{K}$		(4)
	$1-y_1(1+\langle c,e^* angle)+\langle e^*,\mathcal{A}^*y_3 angle\geq 0$		(5)
	$y_1-y_2\geq 0$		(6)
with $\mathcal{K} = \mathcal{S}^n_+$, $\mathcal{K} =$	$\mathcal{S}^n_+ \cap \{d_1\}^\perp$, $\mathcal{K} = \mathcal{S}^n_+ \cap \{d_2\}^\perp$ and	so on.	

Introduction	Facial reduction	Double facial reduction	An example
0000000	0000	000000	0000000
The story so	far		

Suppose we wish to solve (D)

$$\sup_{y} \quad \langle b, y \rangle \tag{D}$$
 subject to $c - \mathcal{A}^* y \in \mathcal{S}^n_+,$

From facial reduction we either detect infeasibility or obtain

$$\begin{array}{ccc} \sup_{y} & \langle b, y \rangle & (\hat{\mathrm{D}}) & \inf_{x} & \langle c, x \rangle & (\hat{\mathrm{P}}) \\ \text{subject to} & c - \mathcal{A}^{*}y \in \mathcal{F}_{\min}^{D}. & \text{subject to} & \mathcal{A}x = b \\ & & x \in (\mathcal{F}_{\min}^{D})^{*} \end{array}$$

where $\mathcal{F}_{\min}^{D} \subseteq \mathcal{S}_{+}^{n} \subseteq (\mathcal{F}_{\min}^{D})^{*}$ (\hat{D}) is equivalent to (D) and has (relative) interior points. However we can not use \mathcal{O}_{int} to solve (\hat{P}) and (\hat{D}) yet.

Introduction	Facial reduction	Double facial reduction	An example
0000000	0000	00000	0000000

Double facial reduction

Idea: apply facial reduction to (\hat{P}) .

$$\sup_{y} \quad \langle b, y \rangle \tag{D}$$
 subject to $c - \mathcal{A}^* y \in \mathcal{S}^n_+,$

First FR $\sup_{y} \langle b, y \rangle$ (\hat{D}) $\inf_{x} \langle c, x \rangle$ (\hat{P}) subject to $c - \mathcal{A}^* y \in \mathcal{F}^D_{\min}$.subject to $\mathcal{A}x = b$ $x \in (\mathcal{F}^D_{\min})^*$ $x \in (\mathcal{F}^D_{\min})^*$

Second FR

$$\sup_{y} \langle b, y \rangle \quad (D^{*}) \qquad \inf_{x} \langle c, x \rangle \quad (P^{*})$$

subject to $c - \mathcal{A}^{*}y \in (\mathcal{F}_{\min}^{\hat{P}})^{*}$.
$$x \in \mathcal{F}_{\min}^{\hat{P}}$$

Introduction
00000000

Double facial reduction 000000 An example 00000000

The double FR theorem

$$\sup_{y} \langle b, y \rangle \qquad (\hat{D}) \qquad \inf_{x} \langle c, x \rangle \qquad (\hat{P})$$
subject to $c - \mathcal{A}^{*}y \in \mathcal{F}_{\min}^{D}$.
$$\sup_{y} \langle b, y \rangle \qquad (D^{*}) \qquad \inf_{x} \langle c, x \rangle \qquad (P^{*})$$
subject to $c - \mathcal{A}^{*}y \in (\mathcal{F}_{\min}^{\hat{P}})^{*}$.
$$x \in \mathcal{F}_{\min}^{\hat{P}}$$

We have $\mathcal{F}_{\min}^{\mathcal{D}} \subseteq (\mathcal{F}_{\min}^{\hat{p}})^*$, $\mathcal{F}_{\min}^{\hat{p}} \subseteq (\mathcal{F}_{\min}^{\mathcal{D}})^*$.

Theorem

(1) (θ_D) is finite $\iff \mathcal{F}_{\min}^{\hat{\rho}} \neq \emptyset$. In this case, (P*) and (D*) both have relative interior points and

$$\theta_D = \theta_{P^*} = \theta_{D^*}.$$

() $\theta_D = +\infty$ if and only if $\mathcal{F}_{\min}^{\hat{P}} = \emptyset$.

Introduction 00000000 Facial reduction

Double facial reduction

An example 00000000

The story so far - Part 2

$$\sup_{y} \langle b, y \rangle$$
(D)
subject to $c - \mathcal{A}^* y \in \mathcal{S}^n_+,$
$$\sup_{y} \langle b, y \rangle$$
(D*) $\inf_{x} \langle c, x \rangle$ (P*)
subject to $c - \mathcal{A}^* y \in (\mathcal{F}^{\hat{P}}_{\min})^*.$
subject to $\mathcal{A}x = b$
 $x \in \mathcal{F}^{\hat{P}}_{\min}$

So far, we are able to

- Determine whether (D) is feasible or not.
- Compute θ_D and determine whether it is $+\infty$ or not.
- Next steps: obtaining optimal solutions.

Introduction	Facial reduction	Double facial reduction	An example
0000000	0000	000000	0000000
Optimal so	lutions		

If we know θ_D , we can solve the feasibility problem

$$\begin{array}{ll} \text{find} & y & (\text{Feas}) \\ \text{subject to} & c - \mathcal{A}^* y \in \mathcal{S}^n_+, \\ & \langle b, y \rangle = \theta_D \end{array}$$

in O(n) calls to \mathcal{O}_{int} .

Introduction
00000000

Double facial reduction

An example 00000000

Unattained optimal solutions

$$\sup_{y} \langle b, y \rangle \qquad (\hat{D}) \qquad \inf_{x} \langle c, x \rangle \qquad (\hat{P})$$

subject to $c - \mathcal{A}^* y \in \mathcal{F}_{\min}^D$.
subject to $\mathcal{A}x = b$
 $x \in (\mathcal{F}_{\min}^D)^*$

$$\sup_{y} \langle b, y \rangle \quad (D^*) \qquad \inf_{x} \langle c, x \rangle \quad (P^*)$$

subject to $c - \mathcal{A}^* y \in (\mathcal{F}_{\min}^{\hat{p}})^*.$
subject to $\mathcal{A}x = b$
 $x \in \mathcal{F}_{\min}^{\hat{p}}$

Let y^* be an optimal solution do (D*) The directions $\{d_1, \ldots, d_\ell\}$ obtained in the final FR and y^* can be used to construct y_ϵ :

$$c - \mathcal{A}^* y_{\epsilon} \in \mathcal{S}^n_+, \qquad \langle b, y_{\epsilon} \rangle \geq \theta_D - \epsilon.$$

Introduction 00000000 Facial reduction

Double facial reduction

An example 00000000

Completely solving general SDPs

Using FR, double FR and \mathcal{O}_{int} we can

- Detect feasibility and infeasibility.
 - in case of infeasibility: detect the type of feasbility.
- Compute the optimal value and an optimal solution if it exists.
- Compute ϵ -optimal solutions.

Introduction	Facial reduction	Double facial reduction	An example
00000000	0000	000000	•0000000
An example			

$$\begin{split} \sup_{y \in \mathbb{R}^8} & -y_4 - 2y_6 - 2y_7 & \text{(D)} \\ \text{s.t.} & & & & \\ \begin{pmatrix} y_1 & & & & y_3 - 1 \\ y_1 & & & & y_5 - 1 \\ & y_2 & y_3 & & & & \\ & y_3 & y_4 - y_5 & & & & \\ & & & y_4 & -0.5y_8 + 0.5 & y_6 & \\ & & & & -0.5y_8 + 0.5 & y_8 & y_7 & \\ & & & & y_6 & y_7 & 0 & \\ y_3 - 1 & y_5 - 1 & & & & 0 \end{pmatrix} \in \mathcal{S}^8_+. \end{split}$$

• $\theta_D = -1$, $\theta_P = 0$ and neither are attained.

Introduction
00000000

Double facial reduction 000000 An example 00000000

First FR

Let
$$\mathcal{S}^{r,n}_+ \coloneqq \left\{ \begin{pmatrix} U & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{S}^n \mid U \in \mathcal{S}^r_+ \right\}.$$

• $\mathcal{F}^D_{\min} = \mathcal{S}^{6,8}_+$
• $(\mathcal{F}^D_{\min})^* = \left\{ \begin{pmatrix} U & V \\ V & W \end{pmatrix} \in \mathcal{S}^8 \mid U \in \mathcal{S}^6_+ \right\}$

Introduction	Facial reduction	Double facial reduction	An example
00000000	0000	000000	0000000
Second FR			

Linear constraints of (P):

$$-x_{11} - x_{22} = 0 \qquad -x_{33} = 0 \qquad -2x_{18} - 2x_{34} = 0 \qquad -x_{44} - x_{55} = -1$$

$$-2x_{28} + x_{44} = 0 \qquad -2x_{57} = -2 \qquad -2x_{67} = -2 \qquad x_{56} - x_{66} = 0$$

x is feasible for (P) if and only if $x \in \mathcal{S}^8_+$ and can be written as

/ 0 ₄				
	1	x ₅₆	1	x ₅₈
	<i>x</i> 56	x ₅₆	1	x ₆₈
	1	1	X77	X78
	<i>X</i> 58	<i>x</i> ₆₈	<i>x</i> ₇₈	x ₈₈ /

x is feasible for (\hat{P}) if and only if $x \in (S^{6,8})^*$, satisfies the linear equations above and can be written as

$$\begin{pmatrix} 0_3 & 0 & V_1 \\ 0 & U & V_2 \\ V_1^\top & V_2^\top & W \end{pmatrix},$$

where $U \in \mathcal{S}_{+}^{n}$.

Introduction	Facial reduction	Double facial reduction	An example
0000000	0000	000000	0000000
Second FR	- (cont.)		

x is feasible for $(\hat{P}) \Rightarrow x$ can be written as

$$\begin{pmatrix} 0_3 & 0 & V_1 \\ 0 & U & V_2 \\ V_1^\top & V_2^\top & W \end{pmatrix},$$

where $U \in \mathcal{S}_{+}^{n}$.

$$\mathcal{F}_{\min}^{\hat{P}} = \left\{ \begin{pmatrix} 0_{3} & 0 & V_{1} \\ 0 & U & V_{2} \\ V_{1}^{\top} & V_{2}^{\top} & W \end{pmatrix} \mid U \in \mathcal{S}_{+}^{3} \right\}$$
$$\mathcal{F}_{\min}^{\hat{P}})^{*} = \left\{ \begin{pmatrix} Z_{1} & Z_{12} & 0 \\ Z_{12} & U & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid U \in \mathcal{S}_{+}^{3} \right\}$$

Introduction	Facial reduction	Double facial reduction	An example
0000000	0000	000000	00000000
Second FR -	(cont.)		

14.

cun

$$\begin{split} \sup_{\substack{y \in \mathbb{R}^{3} \\ y \in \mathbb{R}^{3} \\ s.t.}} & -y_{4} - 2y_{6} - 2y_{7} & (D^{*}) \\ & \\ s.t. & \\ \begin{pmatrix} y_{1} & & & & y_{3} - 1 \\ y_{1} & & & & y_{5} - 1 \\ & & y_{2} & y_{3} \\ & & y_{3} & y_{4} - y_{5} \\ & & & y_{4} & -0.5y_{8} + 0.5 & y_{6} \\ & & & & -0.5y_{8} + 0.5 & y_{8} & y_{7} \\ & & & & & y_{6} & y_{7} & 0 \\ y_{3} - 1 & y_{5} - 1 & & & & 0 \\ \end{split} \in (\mathcal{F}_{\min}^{\hat{p}})^{*}.$$

We have $y_3 = y_5 = 1$, $y_7 = y_6 = 0$. We can take $y_4 = y_5 = 1$, $y_8 = 1$ and $y_1 = y_2 = 0$. The optimal value is attained, but is not feasible for (D).

(D*)

Introduction	Facial reduction	Double facial reduction	An example
00000000	0000	000000	00000●00
A.L	·		

Almost optimal solution

Let
$$y_1^1 = y_2^1 = 1$$
 and $y_3^1 = \cdots = y_8^1 = 0$ and let f^1 the corresponding matrix in range A , so that $f_1 = \begin{pmatrix} I_3 & 0 \\ 0 & 0_5 \end{pmatrix}$

Let

$$\hat{y} = (\hat{y}_1, \hat{y}_2, \hat{y}_3, \hat{y}_4, \hat{y}_5, \hat{y}_6, \hat{y}_7, \hat{y}_8) = (1, 2, 1, 2, 1, 0, 0, 1),$$

so that $c - \mathcal{A}^* \hat{y} \in \operatorname{ri} \mathcal{F}^{D}_{\min}$. Suppose $\epsilon = 0.1$. Let

$$eta = rac{ heta_D - \langle b, \hat{y}
angle - \epsilon}{ heta_D - \langle b, \hat{y}
angle} = 0.9.$$

Then,

$$\tilde{y} = \beta y_i^* + (1 - \beta)\hat{y} + 10y^1$$

is an ϵ -optimal solution to (D).

Introduction 00000000	Facial reduction	Double facial reduction 000000	An example 000000●0
	$\hat{s} = \begin{pmatrix} 1 \\ \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$s^* = egin{pmatrix} 0 \ & \ & \ & \ & \ & \ & \ & \ & \ & \$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

ntroduction	
0000000	

Double facial reduction 000000

An example 0000000

Conclusion

- A general SDP can be completely solved if you are only allowed to solve SDPs having interior points at the primal and dual sides.
- Over the stuff in the paper! Ex: discussion on different types of infeasibility, in-depth analysis of double facial reduction and more.
- The results are valid for any closed convex cone.
- B. F. Lourenço, M. Muramatsu, and T. Tsuchiya, Solving SDP completely with an interior point oracle Optimization Methods and Software, 36 (2021), pp. 425–471.