Completely solving general SDPs

Bruno F. Lourenço
ISM

November 27th, 2021
T60
Joint work with Masakazu Muramatsu and Takashi Tsuchiya

SDPs

$$
\begin{align*}
\inf _{x} & \langle c, x\rangle & (\mathrm{P}) & \sup _{y}\langle b, y\rangle \tag{D}\\
\text { subject to } & \mathcal{A} x=b & \text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{S}_{+}^{n} \\
& x \in \mathcal{S}_{+}^{n} & &
\end{align*}
$$

How to solve SDPs in genera?
B. F. Lourenço, M. Muramatsu, and T. Tsuchiya, Solving SDP completely with an interior point oracle Optimization Methods and Software, 36 (2021), pp. 425-471.

Strange behaviour 1 - Duality gaps

$$
\begin{align*}
\inf _{x} & =2 \underset{12}{ }-2 x_{13} 0 \tag{D}\\
\text { s.t. } & x_{11}=0 \\
& -x_{22}-2 x_{13}=-1 \\
& x \in \mathcal{S}_{+}^{3} .
\end{align*}
$$

(P) $\sup _{t, s} \rightarrow s^{-1}$

$$
\text { s.t. } \quad\left(\begin{array}{ccc}
t & 1 & s-1 \\
1 & s & 0 \\
s-1 & 0 & 0
\end{array}\right) \in \mathcal{S}_{+}^{3}
$$

$\theta_{D}=-1$ and $\theta_{P}=0$.

Strange behaviour 2 - Non-attainment

$$
\begin{array}{ll}
\sup _{t, s} & -s \tag{D}\\
\text { s.t. } & \left(\begin{array}{ll}
t & 1 \\
1 & s
\end{array}\right) \in \mathcal{S}_{+}^{2}
\end{array}
$$

Strange behaviour 3 - Weak infeasibility

$$
\begin{array}{ll}
\sup _{t, s} & t \tag{D}\\
\text { s.t. } & \left(\begin{array}{ll}
t & 1 \\
1 & 0
\end{array}\right) \in \mathcal{S}_{+}^{2}
\end{array}
$$

- Let $V=\left\{c-\mathcal{A}^{*} y \mid y \in \mathbb{R}^{n}\right\}$
- In general, (D) feasible $\Rightarrow \operatorname{dist}\left(V, \mathcal{S}_{+}^{n}\right)=0$
- Here, we have $\operatorname{dist}\left(V, \mathcal{S}_{+}^{n}\right)=0$, but (D) is infeasible.

Multiple things at the same time

$$
\begin{equation*}
\sup _{v \in \mathbb{P} 8}-y_{4}-2 y_{6}-2 y_{7} \tag{D}
\end{equation*}
$$

s.t.

$$
\left(\begin{array}{cccc}
y_{1} & & & \\
& y_{1} & & \\
& & y_{2} & y_{3} \\
& & y_{3} & y_{4}-y_{5} \\
& & & \\
& & & \\
y_{3}-1 & y_{5}-1 & &
\end{array}\right.
$$

$$
\left.\begin{array}{cccc}
& & \begin{array}{l}
y_{3}-1 \\
y_{5}-1 \\
\\
\\
y_{4}
\end{array} & \\
\\
-0.5 y_{8}+0.5 & y_{6} & \\
y_{6}+0.5 & y_{8} & y_{7} & \\
& y_{7} & 0 & 0
\end{array}\right) \in \mathcal{S}_{+}^{8}
$$

- $\theta_{D}=-1, \theta_{P}=0$ and neither are attained.

How to solve SDPs in general?

(1) IPMs? Some first order method? Probably won't work if there is positive duality gap or non-attainment
(2) What if we try to regularize the SDP via facial reduction or something?
© It only fixes one side of the problem.
It is very hard to solve general SDPs! Even in low-dimensions and with apparently harmless data...

Ok, so which SDPs can we actually solve?

- If (P) and (D) both have interior points, then $\theta_{P}=\theta_{D}$ and are attained.
- We have a decent chance of actually solving (P) and (D) with IPMs, augmented Lagrangian and etc.

The interior point oracle $\mathcal{O}_{\text {int }}$
Input:The problem data: \mathcal{A}, b, c. Both (P) and (D$)$ must have interior points.
Output:A primal-dual optimal solution pair x^{*}, y^{*}.

The main result

Completely solving SDPs

Any SDP can be completely solved via polynomially (in n) many calls to $\mathcal{O}_{\text {int }}$

Completely solving (D) entails the following.

- Deciding feasibility and infeasibility.
- In case of infeasibility, distinguishing between weak and strong infeasibility.
- Computing the optimal value
- If attained, we also want an optimal solution.
- If not, we compute an ϵ-optimal solution for any $\epsilon>0$.
- We also want to detect unboundedness.

Next we describe our tools: facial reduction and double facial reduction.

Facial Reduction Basics

$$
\begin{equation*}
\sup \langle b, y\rangle \tag{D}
\end{equation*}
$$

subject to $c-\mathcal{A}^{*} y \in \mathcal{S}_{+}^{n}$,
Let \mathcal{F}_{D} denote the feasible slacks of (D), $\mathcal{F}_{\mathrm{D}}=\left\{S \in \mathcal{S}_{+}^{n} \mid \exists y, c-\mathcal{A}^{*} y\right\}$

- If \mathcal{F}_{D} has no interior point of \mathcal{S}_{+}^{n} then \mathcal{F}_{D} lies on a proper face of \mathcal{S}_{+}^{n}
- The smallest such face $\mathcal{F} \unlhd \mathcal{S}_{+}^{n}$ contains \mathcal{F}_{D} and

$$
\mathcal{F}_{\mathrm{D}} \cap \operatorname{ri} \mathcal{F} \neq \emptyset
$$

- Replacing \mathcal{S}_{+}^{n} by \mathcal{F} leads to a smaller equivalent problem that has an interior point!
T. J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.
Journal of Mathematical Analysis and Applications, 83(2):495-530, 1981.

More about facial reduction

- If $\left(c+\operatorname{range} \mathcal{A}^{*}\right) \cap$ ri $\mathcal{S}_{+}^{n}=\emptyset$, we find a hyperplane $\{d\}^{\perp}$ that properly separates both, with $d \in \mathcal{S}_{+}^{n}$.
- Then, we replace \mathcal{S}_{+}^{n} by $\mathcal{S}_{+}^{n} \cap\{d\}^{\perp}$ and repeat.

Example:

$$
\left(\begin{array}{ccc}
t & 1 & s-1 \\
1 & s & 0 \\
s-1 & 0 & 0
\end{array}\right) \in \mathcal{S}_{+}^{3}
$$

We can let $d=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

Facial reduction and $\mathcal{O}_{\text {int }}$

Theorem

Through $O(n)$ calls to $\mathcal{O}_{\text {int }}$ we can either detect that (D) is infeasible or find an equivalent SDP that has an interior point at the dual side.

Key idea: d can be found by solving by successively using $\mathcal{O}_{\text {int }}$ to solve

$$
\begin{array}{rll}
\inf _{x, t, w} & t & \\
\text { subject to } & -\left\langle c, x-t e^{*}\right\rangle+t-w & =0 \\
& \langle e, x\rangle+w & =1 \\
& \mathcal{A} x-t \mathcal{A} e^{*} & =0 \tag{3}\\
& (x, t, w) \in \mathcal{K}^{*} \times \mathbb{R}_{+} \times \mathbb{R}_{+} &
\end{array}
$$

$$
\begin{align*}
\sup _{y_{1}, y_{2}, y_{3}} & y_{2} \tag{K}\\
\text { subject to } & c y_{1}-e y_{2}-\mathcal{A}^{*} y_{3} \in \mathcal{K} \\
& 1-y_{1}\left(1+\left\langle c, e^{*}\right\rangle\right)+\left\langle e^{*}, \mathcal{A}^{*} y_{3}\right\rangle \geq 0 \tag{4}\\
& y_{1}-y_{2} \geq 0 \tag{5}
\end{align*}
$$

with $\mathcal{K}=\mathcal{S}_{+}^{n}, \mathcal{K}=\mathcal{S}_{+}^{n} \cap\left\{d_{1}\right\}^{\perp}, \mathcal{K}=\mathcal{S}_{+}^{n} \cap\left\{d_{2}\right\}^{\perp}$ and so on.

The story so far

Suppose we wish to solve (D)

$$
\begin{equation*}
\sup _{y}\langle b, y\rangle \tag{D}
\end{equation*}
$$

$$
\text { subject to } \quad c-\mathcal{A}^{*} y \in \mathcal{S}_{+}^{n}
$$

From facial reduction we either detect infeasibility or obtain

$$
\begin{array}{clrl}
\sup _{y} & \langle b, y\rangle & (\hat{\mathrm{D}}) & \inf _{x}
\end{array} \begin{array}{ll}
& \langle c, x\rangle \tag{P}\\
\text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{F}_{\text {min }}^{D} .
\end{array}
$$

where $\mathcal{F}_{\text {min }}^{D} \subseteq \mathcal{S}_{+}^{n} \subseteq\left(\mathcal{F}_{\text {min }}^{D}\right)^{*}$
($\hat{\mathrm{D}}$) is equivalent to (D) and has (relative) interior points. However we can not use $\mathcal{O}_{\text {int }}$ to solve ($\hat{\mathrm{P}}$) and ($\hat{\mathrm{D}}$) yet.

Double facial reduction

Idea: apply facial reduction to (\hat{P}).

$$
\begin{align*}
\sup _{y} & \langle b, y\rangle \tag{D}\\
\text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{S}_{+}^{n}
\end{align*}
$$

First FR

$$
\begin{equation*}
\sup _{y}\langle b, y\rangle \tag{D}
\end{equation*}
$$

$$
\begin{equation*}
\inf _{x}\langle c, x\rangle \tag{P}
\end{equation*}
$$

subject to $c-\mathcal{A}^{*} y \in \mathcal{F}_{\text {min }}^{D}$.
subject to $\mathcal{A} x=b$

$$
x \in\left(\mathcal{F}_{\text {min }}^{D}\right)^{*}
$$

Second FR

$$
\sup _{y}\langle b, y\rangle \quad\left(D^{*}\right)
$$

subject to $c-\mathcal{A}^{*} y \in\left(\mathcal{F}_{\text {min }}^{\hat{P}}\right)^{*}$.
subject to $\mathcal{A} x=b$

$$
x \in \mathcal{F}_{\min }^{\hat{P}}
$$

The double FR theorem

$\sup _{y}$	$\langle b, y\rangle$	($\hat{\text { D }}$)	inf_{x}	$\langle c, x\rangle$	
subject to	$c-\mathcal{A}^{*} y \in \mathcal{F}_{\text {min }}^{D}$.		subject to	$\mathcal{A} x=b$	
				$x \in\left(\mathcal{F}_{\text {min }}^{D}\right)^{*}$	
$\sup _{y}$	$\langle b, y\rangle$	(D*)	$\inf _{x}$	$\langle c, x\rangle$	
	subject to $\quad c-\mathcal{A} \quad y \in\left(\mathcal{J}_{\text {min }}\right)$.			subject to	$\mathcal{A} x=b$
					$x \in \mathcal{F}_{\text {min }}^{\hat{P}}$

We have $\mathcal{F}_{\text {min }}^{D} \subseteq\left(\mathcal{F}_{\text {min }}^{\hat{P}}\right)^{*}, \quad \mathcal{F}_{\text {min }}^{\hat{P}} \subseteq\left(\mathcal{F}_{\text {min }}^{D}\right)^{*}$.

Theorem

(i) $\left(\theta_{D}\right)$ is finite $\Longleftrightarrow \mathcal{F}_{\text {min }}^{\hat{P}} \neq \emptyset$. In this case, $\left(\mathrm{P}^{*}\right)$ and $\left(\mathrm{D}^{*}\right)$ both have relative interior points and

$$
\theta_{D}=\theta_{P^{*}}=\theta_{D^{*}}
$$

(3) $\theta_{D}=+\infty$ if and only if $\mathcal{F}_{\text {min }}^{\hat{P}}=\emptyset$.

The story so far - Part 2

$$
\begin{align*}
\sup _{y} & \langle b, y\rangle \tag{D}\\
\text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{S}_{+}^{n}
\end{align*}
$$

subject to $c-\mathcal{A}^{*} y \in\left(\mathcal{F}_{\text {min }}^{\hat{P}}\right)^{*}$.

$$
\begin{equation*}
\text { subject to } \mathcal{A} x=b \tag{*}
\end{equation*}
$$

$$
x \in \mathcal{F}_{\min }^{\hat{P}}
$$

So far, we are able to

- Determine whether (D) is feasible or not.
- Compute θ_{D} and determine whether it is $+\infty$ or not.
- Next steps: obtaining optimal solutions.

Optimal solutions

If we know θ_{D}, we can solve the feasibility problem

$$
\begin{aligned}
\text { find } & y \\
\text { subject to } & c-\mathcal{A}^{*} y \in \mathcal{S}_{+}^{n}, \\
& \langle b, y\rangle=\theta_{D}
\end{aligned}
$$

in $O(n)$ calls to $\mathcal{O}_{\text {int }}$.

Unattained optimal solutions

$\sup _{y}$	$\langle b, y\rangle$		
subject to	$c-\mathcal{A}^{*} y \in \mathcal{F}_{\text {min }}^{D}$.	$\inf _{x}$	$\langle c, x\rangle$
		subject to	$\mathcal{A} x=b$
		$x \in\left(\mathcal{F}_{\text {min }}^{D}\right)^{*}$	
$\sup _{y}$	$\langle b, y\rangle$	$\inf _{x}$	$\langle c, x\rangle$
subject to $c-\mathcal{A}^{*} y \in\left(\mathcal{F}_{\text {min }}^{\hat{P}}\right)^{*}$.	subject to	$\mathcal{A} x=b$	
			$x \in \mathcal{F}_{\text {min }}^{\hat{P}}$

Let y^{*} be an optimal solution do (D*)
The directions $\left\{d_{1}, \ldots, d_{\ell}\right\}$ obtained in the final FR and y^{*} can be used to construct y_{ϵ} :

$$
c-\mathcal{A}^{*} y_{\epsilon} \in \mathcal{S}_{+}^{n}, \quad\left\langle b, y_{\epsilon}\right\rangle \geq \theta_{D}-\epsilon .
$$

Completely solving general SDPs

Using FR, double FR and $\mathcal{O}_{\text {int }}$ we can

- Detect feasibility and infeasibility.
- in case of infeasibility: detect the type of feasbility.
- Compute the optimal value and an optimal solution if it exists.
- Compute ϵ-optimal solutions.

An example

$$
\begin{equation*}
\sup _{y \in \mathbb{R}^{8}}-y_{4}-2 y_{6}-2 y_{7} \tag{D}
\end{equation*}
$$

s.t.

$$
\left(\begin{array}{ccccc}
y_{1} & & & & \\
& y_{1} & & & \\
& & y_{2} & y_{3} & \\
& & y_{3} & y_{4}-y_{5} & \\
& & & & y_{4} \\
& & & & -0.5 y_{8}+0.5 \\
& & & y_{6}
\end{array}\right.
$$

- $\theta_{D}=-1, \theta_{P}=0$ and neither are attained.

First FR

$$
\begin{aligned}
& \text { Let } \mathcal{S}_{+}^{r, n}:=\left\{\left.\left(\begin{array}{ll}
U & 0 \\
0 & 0
\end{array}\right) \in \mathcal{S}^{n} \right\rvert\, U \in \mathcal{S}_{+}^{r}\right\} . \\
& \bullet \mathcal{F}_{\text {min }}^{D}=\mathcal{S}_{+}^{6,8} \\
& \bullet\left(\mathcal{F}_{\text {min }}^{D}\right)^{*}=\left\{\left.\left(\begin{array}{ll}
U & V \\
V & W
\end{array}\right) \in \mathcal{S}^{8} \right\rvert\, U \in \mathcal{S}_{+}^{6}\right\}
\end{aligned}
$$

Second FR

Linear constraints of (P) :

$$
\begin{aligned}
-x_{11}-x_{22}=0 & -x_{33}=0 & -2 x_{18}-2 x_{34}=0 & -x_{44}-x_{55}=-1 \\
-2 x_{28}+x_{44}=0 & -2 x_{57}=-2 & -2 x_{67}=-2 & x_{56}-x_{66}=0
\end{aligned}
$$

x is feasible for (P) if and only if $x \in \mathcal{S}_{+}^{8}$ and can be written as

$$
\left(\begin{array}{ccccc}
O_{4} & & & & \\
& 1 & x_{56} & 1 & x_{58} \\
& x_{56} & x_{56} & 1 & x_{68} \\
& 1 & 1 & x_{77} & x_{78} \\
& x_{58} & x_{68} & x_{78} & x_{88}
\end{array}\right)
$$

x is feasible for (\hat{P}) if and only if $x \in\left(\mathcal{S}^{6,8}\right)^{*}$, satisfies the linear equations above and can be written as

$$
\left(\begin{array}{ccc}
0_{3} & 0 & V_{1} \\
0 & U & V_{2} \\
V_{1}^{\top} & V_{2}^{\top} & W
\end{array}\right),
$$

where $U \in \mathcal{S}_{+}^{n}$.

Second FR - (cont.)

x is feasible for $(\hat{P}) \Rightarrow x$ can be written as

$$
\left(\begin{array}{ccc}
0_{3} & 0 & V_{1} \\
0 & U & V_{2} \\
V_{1}^{\top} & V_{2}^{\top} & W
\end{array}\right),
$$

where $U \in \mathcal{S}_{+}^{n}$.

$$
\begin{aligned}
\mathcal{F}_{\text {min }}^{\hat{P}} & =\left\{\left.\left(\begin{array}{ccc}
0_{3} & 0 & V_{1} \\
0 & U & V_{2} \\
V_{1}^{\top} & V_{2}^{\top} & W
\end{array}\right) \right\rvert\, U \in \mathcal{S}_{+}^{3}\right\} \\
\left(\mathcal{F}_{\text {min }}^{\hat{P}}\right)^{*} & =\left\{\left.\left(\begin{array}{ccc}
z_{1} & Z_{12} & 0 \\
Z_{12} & U & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, U \in \mathcal{S}_{+}^{3}\right\}
\end{aligned}
$$

Second FR - (cont.)

$$
\begin{aligned}
& \sup _{y \in \mathbb{R}^{8}}-y_{4}-2 y_{6}-2 y_{7} \\
& \text { s.t. } \\
& \left(\begin{array}{cccccccc}
y_{1} & & & & & & & y_{3}-1 \\
& y_{1} & & & & & \\
& & y_{2} & y_{3} & & & \\
& & y_{3} & y_{4}-y_{5} & & y_{4} & -0.5 y_{8}+0.5 & y_{6} \\
& & & & -0.5 y_{8}+0.5 & y_{8} & \\
& & & & y_{6} & y_{7} & 0 & \\
& & & & & & \\
& & & & & \\
y_{3}-1 & y_{5}-1 & & & & &
\end{array}\right) \in\left(\mathcal{F}_{\text {min }}^{\hat{P}}\right)^{*} .
\end{aligned}
$$

We have $y_{3}=y_{5}=1, y_{7}=y_{6}=0$. We can take $y_{4}=y_{5}=1, y_{8}=1$ and $y_{1}=y_{2}=0$.
The optimal value is attained, but is not feasible for (D).

Almost optimal solution

Let $y_{1}^{1}=y_{2}^{1}=1$ and $y_{3}^{1}=\cdots=y_{8}^{1}=0$ and let f^{1} the corresponding matrix in range \mathcal{A}, so that $f_{1}=\left(\begin{array}{cc}c_{3} & 0 \\ 0 & 0_{5}\end{array}\right)$
Let

$$
\hat{y}=\left(\hat{y}_{1}, \hat{y}_{2}, \hat{y}_{3}, \hat{y}_{4}, \hat{y}_{5}, \hat{y}_{6}, \hat{y}_{7}, \hat{y}_{8}\right)=(1,2,1,2,1,0,0,1)
$$

so that $c-\mathcal{A}^{*} \hat{y} \in \operatorname{ri} \mathcal{F}_{\text {min }}^{D}$.
Suppose $\epsilon=0.1$. Let

$$
\beta=\frac{\theta_{D}-\langle b, \hat{y}\rangle-\epsilon}{\theta_{D}-\langle b, \hat{y}\rangle}=0.9
$$

Then,

$$
\tilde{y}=\beta y_{i}^{*}+(1-\beta) \hat{y}+10 y^{1}
$$

is an ϵ-optimal solution to (D).

Conclusion

(1) A general SDP can be completely solved if you are only allowed to solve SDPs having interior points at the primal and dual sides.
(2) More stuff in the paper! Ex: discussion on different types of infeasibility, in-depth analysis of double facial reduction and more.
(3) The results are valid for any closed convex cone.

围
B. F. Lourenço, M. Muramatsu, and T. Tsuchiya, Solving SDP completely with an interior point oracle Optimization Methods and Software, 36 (2021), pp. 425-471.

