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Motivation Error bounds The exponential cone Amenable cones

min
x

f (x)

subject to h(x) = 0

Suppose I use my favourite solver and obtain x∗.

The solver tells me that the KKT conditions are satisfied to
ε = 10−6.

It also tells me that ‖h(x∗)‖ ≤ 10−7.

Question 1

Is x∗ close to the set of optimal solutions?

Question 2

Is x∗ close to the set of feasible solutions?

Distance to a set C : dist (x ,C ) := infy∈C ‖x − y‖.
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An example by Sturm

min
x

x22

subject to x22 = 0

x12 = x33

x ∈ S3
+

S3
+: 3× 3 positive semidefinite matrices.
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An example by Sturm

min
x

0

subject to

x11 x33 x13

x33 0 0
x13 0 x33

 � 0.

Feasible set: matrices

x11 0 0
0 0 0
0 0 0

 with x11 ≥ 0.
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An example by Sturm

Let ε > 0

xε :=

 3
√
ε 4
√
ε√

ε ε 0
4
√
ε 0

√
ε


The constraints are “x22 = 0”, “x12 = x33” and “x ∈ S3

+”.

Suppose we measure the violation of constraints by x using

Res(x) := [x2
22 + (x12 − x33)2 + max{−λmin(x), 0}2]1/2

(Res(x) = 0 ⇔x is feasible.) xε does not seem a bad point:

Res(xε) = ε

But...
dist (xε,Feas) ≥ 4

√
ε.

If ε = 10−4, we have Res(xε) = 10−4, but dist (xε,Feas) ≥ 0.1.
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min
x

f (x)

subject to h(x) = 0

Suppose I use my favourite solver and obtain x∗.

The solver tells me that the KKT conditions are satisfied to
ε = 10−6.

It also tells me that ‖h(x∗)‖ ≤ 10−7.

Question 1

Is x∗ close to the set of optimal solutions?

Question 2

Is x∗ close to the set of feasible solutions?

Answer: Not necessarily! Also Res(xε)→ 0 does not imply
dist (xε,Feas)→ 0...
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Conclusions

Using solvers, we input the constraints one by one:
h1(x) = 0, . . . , hn(x) = 0, g1(x) ≤ 0, g2(x) ≤ 0, . . . , gm(x) ≤ 0.

Solvers can only compute the residuals with respect the gi and hj .
(Backward error)

Some measure of error using |hj(x)|, max{gi (x), 0}, or similar
quantities are used

The true distance to the feasible region is almost never computable.
(Forward error)

Backward Error: Res(x) := [x2
22 + (x12 − x33)2 + max{−λmin(x), 0}2]1/2

Forward Error: dist (x ,Feas).

Key point

Forward error 6= O(Backward Error)

The same phenomenon happens for optimal sets: small KKT
residual 6⇒ the point is close to the optimal set.
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What next?

Error bounds provide relations between Forward error and
Backward error.
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Feasibility problems over convex cones

Consider the following feasibility problem over a convex cone K.

find x

subject to x ∈ (L+ a) ∩ K

K: closed convex cone contained in some space E .

L: subspace contained in E .

a ∈ E .

(L+ a is an affine space)
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Motivation

Let ‖ · ‖ be the Euclidean norm and fix x ∈ E .

dist (x ,L+ a) = inf{‖x − y‖ | y ∈ L+ a}
dist (x ,K) = inf{‖x − y‖ | y ∈ K}

dist (x , (L+ a) ∩ K) = inf{‖x − y‖ | y ∈ (L+ a) ∩ K}

Fundamental question

Can we estimate dist (x , (L+ a) ∩ K) using dist (x ,L+ a) and
dist (x ,K)?

X

Backward error: dist (x ,L+ a) + dist (x ,K)

Forward error: dist (x , (L+ a) ∩ K)
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Hoffman’s Lemma

Polyhedral set: a set that can be writen as the set of solutions of a finite

number of linear inequalities.

find x

subject to x ∈ (L+ a) ∩ K

Theorem (Hoffman’s Lemma ’52)

If K is polyhedral, there is a constant κ > 0 such that

dist (x , (L+ a) ∩ K) ≤ κdist (x ,L+ a) + κdist (x ,K), ∀x ∈ E .
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Application to Linear Programming

min
x

cT x

subject to Ax = b

x ∈ Rn
+

Rn
+: nonnegative orthant.

Feas = {x | Ax = b, x ∈ Rn
+}.

Res(x) := ‖Ax − b‖+
n∑

i=1

max(−xi , 0).

Because of Hoffman’s Lemma:

dist (x ,Feas) ≤ κRes(x).

LPs are nice!

In LP, Forward error = O(Backward error)
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Application to Linear Programming - Optimal sets

min
x

cT x

subject to Ax = b

x ∈ Rn
+

θ: optimal value
Opt = {x | cT x = θ,Ax = b, x ∈ Rn

+}.

Resopt(x) := ‖cT x − θ‖+ ‖Ax − b‖+
n∑

i=1

max(−xi , 0).

Because of Hoffman’s Lemma:

dist (x ,Opt) ≤ κ(Resopt(x)).

LPs are nice!

Even for optimal sets we have Forward error = O(Backward Error)
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Lipschitzian error bound

C1,C2: closed convex sets.
C := C1 ∩ C2

Definition (Lipschitzian error bound)

C1,C2 satisfy a Lipschitzian error bound
def⇐⇒ for every bounded set B

there exist θB > 0such that

dist (x , C ) ≤ θB(dist (x ,C1) + dist (x ,C2)) ∀ x ∈ B.

If θB is the same for all B, the bound is global.

Some known results:

riC1 ∩ riC2 6= ∅ ⇒ local Lipschitzian

C1,C2 are polyhedral ⇒ global Lipschitzian (Hoffman’s Lemma)

C1 is polyhedral and C1 ∩ (riC2) 6= ∅ ⇒ local Lipschitzian
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Consequences to conic programming

min
x

cT x

subject to Ax = b

x ∈ K

K: closed convex cone.
Feas = {x | Ax = b, x ∈ K}.
Slater’s condition: Feas ∩ riK 6= ∅

Define
Res(x) := ‖Ax − b‖+ dist (x ,K)

If Slater’s condition holds, for every bounded set B, ∃κB
dist (x ,Feas) ≤ κBRes(x).

Under Slater’s

Forward error = O(Backward error) over every fixed bounded set
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Consequences to conic programming - optimal sets

min
x

cT x

subject to Ax = b

x ∈ Sn+

θ: optimal value
Opt = {x | cT x = θ,Ax = b, x ∈ Sn+}.
Suppose Slater’s condition holds.

In general, Opt ∩ riSn+ = ∅
If x is primal optimal and s is dual optimal then

xs = 0

so s 6= 0 implies x is not positive definite.

Optimal sets are hard

Even under Slater, we may have Forward error 6= O(Backward Error)
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In conic linear programming...

For feasible regions: Slater’s condition holds ⇒ Forward error =
O(Backward error) over every fixed bounded set

For optimal sets: even under Slater’s, Forward error and
Backward error might be quite different.

Key point

We need error bounds that hold when Slater fails!
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Hölderian error bounds

C1,C2: closed convex sets.
C := C1 ∩ C2

Definition (Hölderian error bound)

C1,C2 satisfy a Hölderian error bound
def⇐⇒ for every bounded set B

there exist θB > 0, γB ∈ (0, 1] such that

dist (x , C ) ≤ θB(dist (x ,C1) + dist (x ,C2))γB ∀ x ∈ B.

If γB = γ ∈ (0, 1] for all B, the bound is uniform. If the bound is
uniform with γ = 1, we call it a Lipschitzian error bound.
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Sturm’s bound

Sn: n × n symmetric matrices.
Sn+: n × n positive semidefinite matrices.

Theorem (Sturm’s Error Bound)

Suppose (L+ a) ∩ Sn+ 6= ∅. There exists γ ≥ 0 such that for every
bounded set B, there exists κB such that

dist (x , (L+ a)∩Sn+) ≤ κB(dist (x ,L+ a) + dist (x ,Sn+))(2−γ)
, ∀ x ∈ B

where γ ≤ min{n − 1, dim(L⊥ ∩ {a}⊥), dim span (L+ a)}.

J. F. Sturm.
Error bounds for linear matrix inequalities.
SIAM Journal on Optimization, 10(4):1228–1248, Jan. 2000.

Consequence for optimal sets: if strict complementarity holds, over a
fixed bounded set we have

Forward error = O(
√

Backward Error)
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Beyond Sturm’s error bound

Today’s goals

Prove error bounds for general cones beyond Sn+

Constraint qualifications are forbidden!

L.

Amenable cones: error bounds without constraint qualifications.

Mathematical Programming, 186:1–48, 2021.

Scott B. Lindstrom; L and Ting Kei Pong

Error bounds, facial residual functions and applications to the exponential cone

arXiv:2010.16391
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Review of faces

K: closed convex cone
F ⊆ K: closed convex cone

Definition (Face of a cone)

F is a face of K ⇔ if x + y ∈ F , with x , y ∈ K, then x , y ∈ F .

If F ⊆ K is a face, we write F � K.

t

x1
x2
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Ingredient 1 - Error bounds under a constraint qualification

find x (CFP)

subject to x ∈ (L+ a) ∩ K

Proposition (An error bound for when a face satisfying a CQ is known)

Let F � K be such that

a F ∩ (L+ a) = K ∩ (L+ a)

b (riF) ∩ (L+ a) 6= ∅
Then, for every bounded set B, there exists κB > 0 such that

dist (x ,K ∩ (L+ a)) ≤ κB(dist (x ,F) + dist (x ,L+ a)), ∀x ∈ B.

It is not an error bound with respect to L+ a and K, but it is close.
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General strategy

Goal: We want to bound dist (x , (L+ a) ∩ K) using dist (x ,L+ a) and
dist (x ,K).

1 Find F such that
a F ∩ (L+ a) = K ∩ (L+ a)
b (riF) ∩ (L+ a) 6= ∅

Therefore,

dist (x ,K ∩ (L+ a)) ≤ κB(dist (x ,F) + dist (x ,L+ a)), ∀x ∈ B.
(1)

2 Upper bound dist (x ,F) using dist (x ,K) and dist (x ,L+ a).

3 Plug the upper bound in (1).
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How to find F?

We want F such that
a F ∩ (L+ a) = K ∩ (L+ a)
b (riF) ∩ (L+ a) 6= ∅

Idea:
1 Let F1 = K and i ← 1.
2 If (L+ a) ∩ riF i 6= ∅, we are done.
3 If (L+ a) ∩ riF i = ∅, we invoke a separation theorem.

There exists zi ∈ F∗i \ F⊥i and zi ∈ L⊥ ∩ {a}⊥.
Let F i+1 ← F i ∩ {zi}⊥ and i ← i + 1. Go to Step 2.
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How to find F? - Facial Reduction

Theorem (The facial reduction theorem)

Suppose (CFP) is feasible. There is a chain of faces

F` ( · · · ( F1 = K

and vectors (z1, . . . , z`−1) such that:

(i) For all i ∈ {1, . . . , `− 1}, we have

zi ∈ F∗i ∩ L⊥ ∩ {a}⊥,

F i+1 = F i ∩ {zi}⊥.

(ii) F` ∩ (L+ a) = K ∩ (L+ a) and (riF`) ∩ (L+ a) 6= ∅.

L, M. Muramatsu and T. Tsuchiya.

Facial reduction and partial polyhedrality.

SIAM Journal on Optimization, 28(3), 2018 (http://arxiv.org/abs/1512.02549).

J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.

Journal of Mathematical Analysis and Applications, 83(2):495 – 530, 1981.
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Facial Reduction - Example

sup
t,s

−s (D)

s.t.

 t 1 s − 1
1 s 0

s − 1 0 0

 � 0

K = S3
+,

L+ a =


 t 1 s − 1

1 s 0
s − 1 0 0

 | t, s ∈ R


S3

+ ∩ (L+ a) =


t 1 0

1 1 0
0 0 0

 | (t 1
1 1

)
� 0

 .
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Facial Reduction - Continued

sup
t,s

−s (D)

s.t.

 t 1 s − 1
1 s 0

s − 1 0 0

 � 0

Let

z =

0 0 0
0 0 0
0 0 1

 .

Then

S3
+ ∩ (L+ a) ⊆ {z}⊥.

So, the feasible region is contained in

S3
+ ∩ {z}⊥ =


a b 0
b c 0
0 0 0

 | (a b
b c

)
� 0


F = S3

+ ∩ {z}⊥ is the face we want, since (L+ a) ∩ riF 6= ∅.
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General strategy

Goal: We want to bound dist (x , (L+ a) ∩ K) using dist (x ,L+ a) and
dist (x ,K).

1 Find F such that
a F ∩ (L+ a) = K ∩ (L+ a)
b (riF) ∩ (L+ a) 6= ∅

Therefore,

dist (x ,K ∩ (L+ a)) ≤ κB(dist (x ,F) + dist (x ,L+ a)), ∀x ∈ B.
(1)

2 Upper bound dist (x ,F) using dist (x ,K) and dist (x ,L+ a).

3 Plug the upper bound in (1).

Step 1 done!
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Facial Residual Functions

Let

K: closed convex pointed cone.

F : face of K
z ∈ F∗

Fact:
F ∩ {z}⊥ = K ∩ spanF ∩ {z}⊥.

Definition (Facial residual function for F and z with respect to K)

If ψF,z : R+ × R+ → R+ satisfies

1 ψF,z is nonnegative, monotone nondecreasing in each argument and ψ(0, α) = 0

for every α ∈ R+.

2 whenever x ∈ spanK satisfies the inequalities

dist (x ,K) ≤ ε, 〈x , z〉 ≤ ε, dist (x , spanF) ≤ ε

we have:
dist (x ,F ∩ {z}⊥) ≤ ψF,z(ε, ‖x‖).
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Main result

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let K be a closed convex cone such that K ∩ (L+ a) 6= ∅. Let

F` ( · · · ( F1 = K

be a chain of faces of K together with zi ∈ F∗i ∩ L⊥ ∩ {a}⊥ such that

(L+ a) ∩ riF` 6= ∅.

and F i+1 = F i ∩ {zi}⊥ for every i . Let ψi be a facial residual function for F i ,
zi . Then, after positive rescaling the ψi , for every bounded set B there are
constants κ > 0, M > 0 such that if x ∈ spanK ∩ B satisfies the inequalities

dist (x ,K) ≤ ε, dist (x ,L+ a) ≤ ε,

we have
dist (x , (L+ a) ∩ K) ≤ κ(ε+ ϕ(ε,M)),

where ϕ = ψ`−1♦ · · ·♦ψ1, if ` ≥ 2. If ` = 1, we let ϕ be the function
satisfying ϕ(ε, ‖x‖) = ε.

(f♦g)(a, b) := f (a + g(a, b), b).
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Main result

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let K be a closed convex cone such that K ∩ (L+ a) 6= ∅. Let

F` ( · · · ( F1 = K

be a chain of faces of K together with zi ∈ F∗i ∩ L⊥ ∩ {a}⊥ such that

(L+ a) ∩ riF` 6= ∅.

and Fi+1 = Fi ∩ {zi}⊥ for every i . Let ψi be a facial residual function for Fi ,
zi . Then, after positive rescaling the ψi , for every bounded set B there are
constants κ > 0, M > 0 such that if x ∈ spanK ∩ B satisfies the inequalities

dist (x ,K) ≤ ε, dist (x ,L+ a) ≤ ε,

we have
dist (x , (L+ a) ∩ K) ≤ κ(ε+ ϕ(ε,M)),

where ϕ = ψ`−1♦ · · ·♦ψ1, if ` ≥ 2. If ` = 1, we let ϕ be the function
satisfying ϕ(ε, ‖x‖) = ε.

(f♦g)(a, b) := f (a + g(a, b), b).
31 / 53



Motivation Error bounds The exponential cone Amenable cones

Main result - simplified

Suppose K ∩ (L+ a) 6= ∅.
Let

d(x) := dist (x ,L+ a) + dist (x ,K).

Then, for every B, we have

dist (x , (L+ a) ∩ K) ≤ κB(d(x) + ϕ(d(x),MB)), ∀x ∈ B

where ϕ is a composition of facial residual functions.
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Facial Residual Functions (FRFs) - Examples

If K is a symmetric cone, then

ψF,z(ε, t) = κε+ κ
√
εt

is a FRF, for some κ > 0. (L’21)

If K is polyhedral, then ψF,z(ε, ‖x‖) = κε is a FRF, for some κ > 0.

Reminder:
dist (x ,K) ≤ ε, 〈x , z〉 ≤ ε, dist (x , spanF) ≤ ε

implies
dist (x ,F ∩ {z}⊥) ≤ ψF,z (ε, ‖x‖).
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The case of symmetric cones - L’21

K: symmetric cone (psd matrices, second order cone and etc)

Facial residual function (FRFs): ψF,z(ε, t) = κε+ κ
√
εt

Suppose (L+ a) ∩ K 6= ∅. There exists γ ≥ 0 such that for every
bounded set B, there exists κB such that

dist (x , (L+ a) ∩ K) ≤ κB(dist (x ,L+ a) + dist (x ,K))(2−γ)
, ∀ x ∈ B

where γ is the number of facial reduction steps.
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Consequences for symmetric cone programming

min
x

cT x

subject to Ax = b

x ∈ K

For the feasible set:

Under Slater: Forward error = O(Backward Error).

Without Slater: Forward error = O((Backward Error)2−γ

)

For the optimal set:

Strict complementarity holds: x∗ + s∗ ∈ riK ⇔ x∗ ∈ ri (K∩ {s∗}⊥)

Opt = {x | cT x = θ,Ax = b, x ∈ K} intersects ri (K ∩ {s∗}⊥)
Facial reduction finishes in 1 step.

Under Strict complementarity:
Forward error = O(

√
Backward Error)
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Facial residual functions and g-amenability

g : R+ → R+: monotone nondecreasing function with g(0) = 0.

Definition (g-amenability)

F � K is g-amenable if for every bounded set B, there exists κ > 0 such that

dist (x ,F) ≤ κg(dist (x ,K)), ∀x ∈ (spanF) ∩ B.

If all faces of K are g-amenable, then K is an g-amenable cone.

Suppose K1 and K2 are g-amenables

There are calculus rules for the FRFs of K1 ×K2.

A FRF of a face of K1 can be lifted to a FRF of the whole cone K1.
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Amenable cones

Definition (Amenable cones)

K is amenable if for every face F of K there is κ > 0 such that

dist (x ,F) ≤ κdist (x ,K), ∀x ∈ spanF .

Symmetric cones (e.g., PSD cone) are amenable (κ = 1)

Polyhedral cones are amenable

Strictly convex cones are amenable. (p-cones, second order cones
and so on)

K1,K2 ⇒ FRFs of K1 ×K2 are sums of FRFs of K1 and K2.
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The exponential cone

Kexp :=
{

(x , y , z) | y > 0, z ≥ yex/y
}
∪ {(x , y , z) | x ≤ 0, z ≥ 0, y = 0} .

x

y

z
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The exponential cone

Kexp :=
{

(x , y , z) | y > 0, z ≥ yex/y
}
∪ {(x , y , z) | x ≤ 0, z ≥ 0, y = 0} .

1 Applications to entropy optimization, logistic regression, geometric
programming and etc.

2 Available in Alfonso, Hypatia, Mosek.
https://docs.mosek.com/modeling-cookbook/expo.html.

V. Chandrasekaran, P. Shah
Relative entropy optimization and its applications.
Math. Program. 161, 1–32 (2017)
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Error bounds for the exponential cone - LLP’20

find x (CFP)

subject to x ∈ (L+ a) ∩ Kexp

Four types of error bounds are possible:

Lipschitzian error bound

Hölderian error bound with exponent 1/2

Entropic error bound: for every bounded set B, there exists κB > 0

dist (x, (L+ a) ∩ Kexp) ≤ κBg−∞(max(dist (x,L+ a), dist (x,Kexp))), ∀x ∈ B.

Logarithmic error bound: for every bounded set B, there exists κB > 0

dist (x, (L+ a) ∩ Kexp) ≤ κBg∞(max(dist (x,L+ a), dist (x,Kexp))), ∀x ∈ B.

The results above are optimal.

g−∞(t) :=


0 if t = 0,

−t ln(t) if t ∈
(
0, 1/e2

]
,

t + 1
e2 if t > 1/e2.

g∞(t) :=


0 if t = 0,

− 1
ln(t)

if 0 < t ≤ 1
e2 ,

1
4

+ 1
4
e2t if t > 1

e2 .
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Strange error bounds

From the exponential cone we can:

Obtain sets that do not have a Hölderian error bound, but have a
logarithmic error bound:

F∞ = Kexp ∩ {z}⊥,

where z = (0, 0, 1).

Obtain sets that satisfy a Hölderian bound for all γ ∈ (0, 1) but not
γ = 1. Furthermore, the best error bound is an entropic one.

F−∞ = Kexp ∩ {z}⊥,

where z = (0, 1, 0).
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Final remarks

Much more stuff in the paper! Ex: direct products, techniques for
obtaining FRFs and so on.

Scott B. Lindstrom; L and Ting Kei Pong
Error bounds, facial residual functions and applications to the
exponential cone
arXiv:2010.16391

Other advertisement:

T. Liu and L.
Convergence analysis under consistent error bounds
arXiv:2008.12968

L; Vera Roshchina and James Saunderson
Amenable cones are particularly nice
arXiv:2011.07745
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Amenable cones

Definition (Amenable cones)

K is amenable if for every face F of K there is κ > 0 such that

dist (x ,F) ≤ κdist (x ,K), ∀x ∈ spanF .

Symmetric cones (e.g., PSD cone) are amenable (κ = 1)

Polyhedral cones are amenable

Strictly convex cones are amenable. (p-cones, second order cones
and so on)

Amenability is preserved under linear isomorphism and direct
products
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Facial exposedness

F is a face of K def⇐⇒ F � K

K∗ := {y | 〈y , x〉 ≥ 0,∀x ∈ K}

1 Projectionally exposed cone
def⇐⇒ ∀F � K there exists a projection

such that PK = F .

2 Amenable cones
def⇐⇒ for every face F of K there is κ > 0 such that

dist (x ,F) ≤ κdist (x ,K), ∀x ∈ spanF .

3 Nice cone
def⇐⇒ ∀F � K, F∗ = K∗ + F⊥.

4 Facially exposed cone
def⇐⇒

∀F � K, ∃z ∈ K, s.t. F = K ∩ {z}⊥.
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Comparison of exposedness properties

Known results:
Facially exposed ⇐ Nice ⇐ Amenable

EPBR⇐ Projectionally exposed.
dimK ≤ 3: Facially exposed ⇔ Projectionally exposed (Barker and
Poole, SIADM’87)
There exists a 4D cone that is facially exposed but not nice (Vera,
SIOPT’14).

New results (see LRS’20):
There exists a 4D cone that is nice but not amenable
In dimension 4 or less: Amenable ⇔ Projectionally exposed.

Figure: A 3D slice of a 4D convex cone that is nice but not amenable 45 / 53
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Hyperbolicity cone

Let

p : Rn → R: homogenous polynomial

e ∈ Rn, with p(e) > 0

Hyperbolic polynomial

if for every x ∈ Rn

t 7→ p(te − x)

has only real roots, then p is hyperbolic along e.

For x ∈ Rn, denotes the roots of

t 7→ p(te − x)

by λ1(x), . . . , λr (x).

Hyperbolicity cones

Λ+(p, e) := {x ∈ Rn | λi (x) ≥ 0, i = 1, . . . , r}.
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Example

Let

p(X ) : Sn → R, p(X ) = detX .

e = In.

The roots of
t 7→ p(tIn − X ) = det(tIn − X )

are the eigenvalues of X .

Λ+(p, e) = Sn+.
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Some history

Studied in the 50’s by Gårding in the context of partial differential
equations.

Güler brought them to attention of optimizers in 97.

− log p is a self-concordant barrier for the interior of Λ+(p, e).

Renegar proved key results on the structure of Λ+(p, e) in 2005.

48 / 53



Motivation Error bounds The exponential cone Amenable cones

Some classes of cones

More general Hyperbolicity cone
Homogeneous cone
Symmetric cone
PSD cone
Second order cone

Less general Rn
+

Example of cone that is not a hyperbolicity cone: exponential cone

Renegar proved that hyperbolicity cones are facially exposed.
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Some classes of cones

Hyperbolicity cone

Slice of a PSD cone (spectrahedral)

Homogeneous cone
Symmetric cone
PSD cone
Second order cone
Rn

+

Spectrahedral cone

K is spectrahedral
def⇐⇒ A(K) = Sn+ ∩ V holds for some injective linear

map A, subspace V and n.
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Lax conjecture

Spectrahedral cone

K is spectrahedral
def⇐⇒ A(K) = Sn+ ∩ V holds for some injective linear

map A, subspace V and n.

Generalized Lax Conjecture

Is every hyperbolicity cone spectrahedral?
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Recent results on amenability

A few results (L, Roshchina and Saunderson)

Hyperbolicity cones and spectrahedral cones are amenable.

Amenability is preserved by intersections and taking slices.

A cone constructed from an amenable compact convex set is
amenable.
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Open questions

Is there an amenable cone that is not projectionally exposed?
(dimK ≥ 5 must hold!)

Which cones are projectionally exposed?

L, V. Roshchina and J. Saunderson

Amenable cones are particularly nice.

arxiv:2011.07745

L, V. Roshchina and J. Saunderson

Hyperbolicity cones are amenable.

arxiv:2102.06359

Thank you!
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Fβ>1

Fβ=1

Fβ∈(0,1)

Fβ=0 Fβ<0

F∞

F−∞ zβ>1 zβ=1
zβ∈(0,1)

zβ<0

zβ=0

zβ=−∞

zβ=∞, span z∞ = Fne

Figure: The exponential cone, its faces and exposing vectors
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FRFs without projection - LLP’21

u = PFw

v

F
w = P{z}⊥v

‖w − v‖

‖w − u‖

inf

{
‖w − v‖α

‖w − u‖

}
> 0 ⇒ ϕ(ε, t) := κtε+ κtε

α is FRF

inf

{
g(‖w − v‖)
‖w − u‖

}
> 0 ⇒ ϕ(ε, t) := κtε+ κtg(2ε) is FRF
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