Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	00000000000

An (hopefully gentle) introduction to error bounds for conic problems

Bruno F. Lourenço ISM

July 30th, 2021 SOMA

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	00000000000

 $\min_{x} f(x)$
subject to h(x) = 0

- Suppose I use my favourite solver and obtain x^* .
- The solver tells me that the KKT conditions are satisfied to $\epsilon = 10^{-6}.$
- It also tells me that $\|h(x^*)\| \leq 10^{-7}$.

Question 1

Is x^* close to the set of **optimal** solutions?

Question 2

Is x^* close to the set of **feasible** solutions?

Distance to a set C: dist $(x, C) := \inf_{y \in C} ||x - y||$.

Error bounds

The exponential cone 00000 Amenable cones

An example by Sturm

$$\begin{array}{ll} \min_{x} & x_{22} \\ \text{ubject to} & x_{22} = 0 \\ & x_{12} = x_{33} \\ & x \in \mathcal{S}^3_+ \end{array}$$

• \mathcal{S}^3_+ : 3 × 3 positive semidefinite matrices.

s

Error bounds

The exponential cone 00000 Amenable cones

An example by Sturm

Error bounds

The exponential cone 00000 Amenable cones

An example by Sturm

Let $\epsilon > 0$

$$\mathsf{x}_\epsilon \coloneqq egin{pmatrix} 3 & \sqrt{\epsilon} & \sqrt[4]{\epsilon} \ \sqrt{\epsilon} & \epsilon & 0 \ \sqrt[4]{\epsilon} & 0 & \sqrt{\epsilon} \end{pmatrix}$$

- The constraints are " $x_{22} = 0$ ", " $x_{12} = x_{33}$ " and " $x \in \mathcal{S}^3_+$ ".
- Suppose we measure the violation of constraints by x using

$$\operatorname{Res}(x) \coloneqq [x_{22}^2 + (x_{12} - x_{33})^2 + \max\{-\lambda_{\min}(x), 0\}^2]^{1/2}$$

 $(\operatorname{Res}(x) = 0 \Leftrightarrow x \text{ is feasible.}) X_{\epsilon}$ does not seem a bad point:

$$\operatorname{Res}(x_{\epsilon}) = \epsilon$$

But...

dist
$$(x_{\epsilon}, \text{Feas}) \geq \sqrt[4]{\epsilon}$$
.

If $\epsilon = 10^{-4}$, we have $\operatorname{Res}(x_{\epsilon}) = 10^{-4}$, but $\operatorname{dist}(x_{\epsilon}, \operatorname{Feas}) \ge 0.1$.

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	00000000000

 $\min_{x} f(x)$
subject to h(x) = 0

- Suppose I use my favourite solver and obtain x*.
- The solver tells me that the KKT conditions are satisfied to $\epsilon = 10^{-6}.$
- It also tells me that $||h(x^*)|| \le 10^{-7}$.

Question 1

Is x^* close to the set of **optimal** solutions?

Question 2

Is x^* close to the set of **feasible** solutions?

Answer: **Not necessarily!** Also $\operatorname{Res}(x_{\epsilon}) \to 0$ does not imply $\operatorname{dist}(x_{\epsilon}, \operatorname{Feas}) \to 0...$

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	00000000000
Conclusions			

- Using solvers, we input the constraints one by one: $h_1(x) = 0, \ldots, h_n(x) = 0, g_1(x) \le 0, g_2(x) \le 0, \ldots, g_m(x) \le 0.$
- Solvers can only compute the residuals with respect the g_i and h_j . (Backward error)
 - Some measure of error using |h_j(x)|, max{g_i(x),0}, or similar quantities are used
- The **true** distance to the feasible region is almost never computable. (**Forward error**)

Backward Error: $\text{Res}(x) := [x_{22}^2 + (x_{12} - x_{33})^2 + \max\{-\lambda_{\min}(x), 0\}^2]^{1/2}$ Forward Error: dist(x, Feas).

Key point

Forward error $\neq O(Backward Error)$

The exponential cone 00000 Amenable cones

What next?

Error bounds provide relations between Forward error and Backward error.

The exponential cone 00000 Amenable cones

Feasibility problems over convex cones

Consider the following *feasibility problem over a convex cone* \mathcal{K} .

find x subject to $x \in (\mathcal{L} + a) \cap \mathcal{K}$

- \mathcal{K} : closed convex cone contained in some space \mathcal{E} .
- \mathcal{L} : subspace contained in \mathcal{E} .
- *a* ∈ *E*.

 $(\mathcal{L} + \mathbf{a} \text{ is an affine space})$

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	0000000000
Motivation			

Let $\|\cdot\|$ be the Euclidean norm and fix $x \in \mathcal{E}$.

$$dist (x, \mathcal{L} + a) = \inf\{ ||x - y|| \mid y \in \mathcal{L} + a \}$$
$$dist (x, \mathcal{K}) = \inf\{ ||x - y|| \mid y \in \mathcal{K} \}$$
$$dist (x, (\mathcal{L} + a) \cap \mathcal{K}) = \inf\{ ||x - y|| \mid y \in (\mathcal{L} + a) \cap \mathcal{K} \}$$

Fundamental question

Can we estimate dist $(x, (\mathcal{L} + a) \cap \mathcal{K})$ using dist $(x, \mathcal{L} + a)$ and dist (x, \mathcal{K}) ?

- Backward error: dist $(x, \mathcal{L} + a) + dist (x, \mathcal{K})$
- Forward error: dist $(x, (\mathcal{L} + a) \cap \mathcal{K})$

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	● 00000000000 0000000000000000000000000	00000	0000000000
Hoffman's	lemma		

Polyhedral set: a set that can be writen as the set of solutions of a finite

number of linear inequalities.

find x subject to $x \in (\mathcal{L} + a) \cap \mathcal{K}$

Theorem (Hoffman's Lemma '52)

If \mathcal{K} is polyhedral, there is a constant $\kappa > 0$ such that

dist $(x, (\mathcal{L} + a) \cap \mathcal{K}) \le \kappa \text{dist} (x, \mathcal{L} + a) + \kappa \text{dist} (x, \mathcal{K}), \quad \forall x \in \mathcal{E}.$

Error bounds

The exponential cone 00000 Amenable cones

Application to Linear Programming

$$\begin{array}{ll}
\min_{x} & c^{T}x \\
\text{subject to} & Ax = b \\
& x \in \mathbb{R}^{n}_{+}
\end{array}$$

•
$$\mathbb{R}_{+}^{n}$$
: nonnegative orthant.
• Feas = $\{x \mid Ax = b, x \in \mathbb{R}_{+}^{n}\}$.
 $\operatorname{Res}(x) \coloneqq ||Ax - b|| + \sum_{i=1}^{n} \max(-x_{i}, 0)$.

Because of Hoffman's Lemma:

$$\operatorname{dist}(x,\operatorname{Feas}) \leq \kappa \operatorname{Res}(x).$$

LPs are nice!

In LP, Forward error = O(Backward error)

Error bounds

The exponential cone 00000 Amenable cones

Application to Linear Programming - Optimal sets

$$\begin{array}{l} \min_{x} \quad c^{T}x \\
\text{subject to} \quad Ax = b \\
\quad x \in \mathbb{R}^{n}_{+}
\end{array}$$

•
$$\theta$$
: optimal value
• Opt = { $x \mid c^T x = \theta, Ax = b, x \in \mathbb{R}^n_+$ }.
Res_{opt}(x) := $||c^T x - \theta|| + ||Ax - b|| + \sum_{i=1}^n \max(-x_i, 0)$.

Because of Hoffman's Lemma:

$$\operatorname{dist}(x,\operatorname{Opt}) \leq \kappa(\operatorname{Res}_{\operatorname{opt}}(x)).$$

LPs are nice!

Even for optimal sets we have **Forward error** = O(**Backward Error**)

Error bounds

The exponential cone 00000 Amenable cones

Lipschitzian error bound

 $\begin{array}{l} C_1, C_2: \text{ closed convex sets.} \\ C := C_1 \cap C_2 \end{array}$

Definition (Lipschitzian error bound)

 C_1, C_2 satisfy a **Lipschitzian error bound** $\stackrel{\text{def}}{\iff}$ for every bounded set *B* there exist $\theta_B > 0$ such that

 $\operatorname{dist}(x, C) \leq \theta_B(\operatorname{dist}(x, C_1) + \operatorname{dist}(x, C_2)) \quad \forall x \in B.$

If θ_B is the same for all *B*, the bound is **global**.

Some known results:

- ri $C_1 \cap ri C_2 \neq \emptyset \Rightarrow$ local Lipschitzian
- C_1, C_2 are polyhedral \Rightarrow global Lipschitzian (Hoffman's Lemma)
- C_1 is polyhedral and $C_1 \cap (\operatorname{ri} C_2) \neq \emptyset \Rightarrow$ local Lipschitzian

Error bounds

The exponential cone 00000 Amenable cones

Consequences to conic programming

 $\min_{x} c^{T}x$ subject to Ax = b $x \in \mathcal{K}$

- *K*: closed convex cone.
- Feas = $\{x \mid Ax = b, x \in \mathcal{K}\}.$
- Slater's condition: Feas $\cap \operatorname{ri} \mathcal{K} \neq \emptyset$

Define

$$\operatorname{Res}(x) \coloneqq \|Ax - b\| + \operatorname{dist}(x, \mathcal{K})$$

If Slater's condition holds, for every bounded set B, $\exists \kappa_B$

dist $(x, \text{Feas}) \leq \kappa_B \text{Res}(x)$.

Under Slater's

Forward error = O(Backward error) over every fixed bounded set

Error bounds

The exponential cone 00000 Amenable cones

Consequences to conic programming - optimal sets

$$\begin{array}{ll} \min_{x} & c^{T}x \\ \text{subject to} & Ax = b \\ & x \in \mathcal{S}^{n}_{+} \end{array}$$

• θ : optimal value

- Opt = { $x \mid c^T x = \theta, Ax = b, x \in \mathcal{S}_+^n$ }.
- Suppose Slater's condition holds.

In general, $\operatorname{Opt}\cap\operatorname{ri}\mathcal{S}^n_+=\emptyset$

If x is primal optimal and s is dual optimal then

xs = 0

so $s \neq 0$ implies x is **not positive definite**.

Optimal sets are hard

Even under Slater, we may have **Forward error** $\neq O($ **Backward Error**)

Error bounds

The exponential cone 00000 Amenable cones

In conic linear programming...

- For feasible regions: Slater's condition holds \Rightarrow Forward error = O(Backward error) over every fixed bounded set
- For optimal sets: even under Slater's, Forward error and Backward error might be quite different.

Key point

We need error bounds that hold when Slater fails!

Error bounds

The exponential cone 00000 Amenable cones

Hölderian error bounds

 $\begin{array}{l} C_1, C_2: \text{ closed convex sets.} \\ C := C_1 \cap C_2 \end{array}$

Definition (Hölderian error bound)

 C_1, C_2 satisfy a **Hölderian error bound** $\stackrel{\text{def}}{\iff}$ for every bounded set *B* there exist $\theta_B > 0$, $\gamma_B \in (0, 1]$ such that

 $\operatorname{dist}(x, \mathbb{C}) \leq \theta_B(\operatorname{dist}(x, \mathbb{C}_1) + \operatorname{dist}(x, \mathbb{C}_2))^{\gamma_B} \quad \forall \ x \in B.$

If $\gamma_B = \gamma \in (0, 1]$ for all *B*, the bound is **uniform**. If the bound is uniform with $\gamma = 1$, we call it a **Lipschitzian** error bound.

Motivation
000000000

Error bounds

The exponential cone 00000 Amenable cones

Sturm's bound

- S^n : $n \times n$ symmetric matrices.
- \mathcal{S}^n_+ : $n \times n$ positive semidefinite matrices.

Theorem (Sturm's Error Bound)

Suppose $(\mathcal{L} + \mathbf{a}) \cap \mathcal{S}^n_+ \neq \emptyset$. There exists $\gamma \ge 0$ such that for every bounded set B, there exists κ_B such that

 $\operatorname{dist}(x,(\mathcal{L}+a)\cap\mathcal{S}_{+}^{n}) \leq \kappa_{B}(\operatorname{dist}(x,\mathcal{L}+a) + \operatorname{dist}(x,\mathcal{S}_{+}^{n}))^{(2^{-\gamma})}, \quad \forall x \in B$

where $\gamma \leq \min\{n-1, \dim(\mathcal{L}^{\perp} \cap \{a\}^{\perp}), \dim \operatorname{span}(\mathcal{L} + a)\}.$

J. F. Sturm.

Error bounds for linear matrix inequalities.

SIAM Journal on Optimization, 10(4):1228–1248, Jan. 2000.

Consequence for optimal sets: if **strict complementarity holds**, over a fixed bounded set we have

Forward error =
$$O(\sqrt{\text{Backward Error}})$$

Error bounds

The exponential cone 00000 Amenable cones

Beyond Sturm's error bound

Today's goals

- Prove error bounds for general cones beyond \mathcal{S}^n_+
- Constraint qualifications are forbidden!

Amenable cones: error bounds without constraint qualifications.

Mathematical Programming, 186:1–48, 2021.

Scott B. Lindstrom; L and Ting Kei Pong

Error bounds, facial residual functions and applications to the exponential cone arXiv:2010.16391

Error bounds

The exponential cone 00000 Amenable cones

- \mathcal{K} : closed convex cone
- $\mathcal{F} \subseteq \mathcal{K}$: closed convex cone

Definition (Face of a cone)

 \mathcal{F} is a face of $\mathcal{K} \Leftrightarrow$ if $x + y \in \mathcal{F}$, with $x, y \in \mathcal{K}$, then $x, y \in \mathcal{F}$.

If $\mathcal{F} \subseteq \mathcal{K}$ is a face, we write $\mathcal{F} \trianglelefteq \mathcal{K}$.

Error bounds

The exponential cone 00000 Amenable cones

Ingredient 1 - Error bounds under a constraint qualification

find x (CFP)
subject to
$$x \in (\mathcal{L} + a) \cap \mathcal{K}$$

Proposition (An error bound for when a face satisfying a CQ is known)

Let $\mathcal{F} \trianglelefteq \mathcal{K}$ be such that

- (ri \mathcal{F}) \cap ($\mathcal{L} + a$) $\neq \emptyset$

Then, for every bounded set B, there exists $\kappa_B > 0$ such that

$$\operatorname{dist}(x, \mathcal{K} \cap (\mathcal{L} + a)) \leq \kappa_B(\operatorname{dist}(x, \mathcal{F}) + \operatorname{dist}(x, \mathcal{L} + a)), \qquad \forall x \in B.$$

It is not an error bound with respect to $\mathcal{L} + a$ and \mathcal{K} , but it is close.

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	0000000000
General st	rategy		

Goal: We want to bound dist (x, (L + a) ∩ K) using dist (x, L + a) and dist (x, K).
Find F such that
F ∩ (L + a) = K ∩ (L + a)
(ri F) ∩ (L + a) ≠ Ø
Therefore,
dist (x, K ∩ (L + a)) ≤ κ_B(dist (x, F) + dist (x, L + a)), ∀x ∈ B.

Output Upper bound dist (x, \mathcal{F}) using dist (x, \mathcal{K}) and dist $(x, \mathcal{L} + a)$.

Plug the upper bound in (1).

(1)

Error bounds

The exponential cone 00000 Amenable cones

How to find \mathcal{F} ?

Error bounds

How to find \mathcal{F} ? - Facial Reduction

Theorem (The facial reduction theorem)

Suppose (CFP) is feasible. There is a chain of faces

 $\mathcal{F}_{\ell} \subset \cdots \subset \mathcal{F}_{1} = \mathcal{K}$

and vectors $(z_1, \ldots, z_{\ell-1})$ such that:

() For all $i \in \{1, \ldots, \ell - 1\}$, we have

$$z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{\mathbf{a}\}^{\perp}$$
$$\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}.$$

L, M. Muramatsu and T. Tsuchiya.

Facial reduction and partial polyhedrality.

SIAM Journal on Optimization, 28(3), 2018 (http://arxiv.org/abs/1512.02549).

J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.

Journal of Mathematical Analysis and Applications, 83(2):495 – 530, 1981.

Error bounds

The exponential cone 00000 Amenable cones

(D)

Facial Reduction - Example

 $\sup_{t,s} -s$ s.t. $\begin{pmatrix} t & 1 & s-1 \\ 1 & s & 0 \\ s-1 & 0 & 0 \end{pmatrix} \succeq 0$ $\mathcal{K} = \mathcal{S}^3_{\perp},$ $\mathcal{L} + \mathbf{a} = \left\{ \begin{pmatrix} t & 1 & s - 1 \\ 1 & s & 0 \\ s - 1 & 0 & 0 \end{pmatrix} \mid t, s \in \mathbb{R} \right\}$ $\mathcal{S}^3_+ \cap (\mathcal{L} + \mathbf{a}) = \left\{ \begin{pmatrix} t & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid \begin{pmatrix} t & 1 \\ 1 & 1 \end{pmatrix} \succeq 0 \right\}.$

Error bounds

 $\sup_{t,s} -s$

Facial Reduction - Continued

(D)

Let

 $z = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

s.t. $\begin{pmatrix} t & 1 & s-1 \\ 1 & s & 0 \\ s-1 & 0 & 0 \end{pmatrix} \succeq 0$

Then

 $\mathcal{S}^3_+ \cap (\mathcal{L} + a) \subseteq \{z\}^{\perp}.$

So, the feasible region is contained in

$$\mathcal{S}^{3}_{+} \cap \{z\}^{\perp} = \left\{ \begin{pmatrix} a & b & 0 \\ b & c & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid \begin{pmatrix} a & b \\ b & c \end{pmatrix} \succeq 0 \right\}$$

 $\mathcal{F} = \mathcal{S}^3_+ \cap \{z\}^{\perp}$ is the face we want, since $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F} \neq \emptyset$.

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000 000000000 000000	00000	0000000000
General stra	ategy		

Goal: We want to bound dist $(x, (\mathcal{L} + a) \cap \mathcal{K})$ using dist $(x, \mathcal{L} + a)$ and dist (x, \mathcal{K}) .

- Find \mathcal{F} such that

 - $(\operatorname{ri} \mathcal{F}) \cap (\mathcal{L} + a) \neq \emptyset$

Therefore,

dist
$$(x, \mathcal{K} \cap (\mathcal{L} + a)) \le \kappa_B($$
dist $(x, \mathcal{F}) +$ dist $(x, \mathcal{L} + a)), \quad \forall x \in B.$
(1)

- **9** Upper bound dist (x, \mathcal{F}) using dist (x, \mathcal{K}) and dist $(x, \mathcal{L} + a)$.
- Plug the upper bound in (1).

Step 1 done!

Error bounds

The exponential cone 00000 Amenable cones

Facial Residual Functions

Let

- \mathcal{K} : closed convex pointed cone.
- \mathcal{F} : face of \mathcal{K}
- $z \in \mathcal{F}^*$

Fact:

$$\mathcal{F} \cap \{z\}^{\perp} = \mathcal{K} \cap \operatorname{span} \mathcal{F} \cap \{z\}^{\perp}.$$

Definition (Facial residual function for \mathcal{F} and z with respect to \mathcal{K})

If $\psi_{\mathcal{F},z}:\mathbb{R}_+\times\mathbb{R}_+\to\mathbb{R}_+$ satisfies

- $\psi_{\mathcal{F},z}$ is nonnegative, monotone nondecreasing in each argument and $\psi(0,\alpha) = 0$ for every $\alpha \in \mathbb{R}_+$.
- 2 whenever $x \in \operatorname{span} \mathcal{K}$ satisfies the inequalities

$$\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \langle x,z \rangle \leq \epsilon, \quad \operatorname{dist}(x,\operatorname{span}\mathcal{F}) \leq \epsilon$$

we have:

dist $(x, \mathcal{F} \cap \{z\}^{\perp}) \leq \psi_{\mathcal{F},z}(\epsilon, ||x||).$

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	00000000000

Main result

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let \mathcal{K} be a closed convex cone such that $\mathcal{K} \cap (\mathcal{L} + \mathbf{a}) \neq \emptyset$. Let

 $\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_1 = \mathcal{K}$

be a chain of faces of \mathcal{K} together with $z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$ such that

 $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F}_{\ell} \neq \emptyset.$

and $\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$ for every *i*. Let ψ_i be a facial residual function for \mathcal{F}_i , z_i . Then, after positive rescaling the ψ_i , for every bounded set *B* there are constants $\kappa > 0$, M > 0 such that if $x \in \operatorname{span} \mathcal{K} \cap B$ satisfies the inequalities

 $\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \operatorname{dist}(x,\mathcal{L}+a) \leq \epsilon,$

we have

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \leq \kappa(\epsilon + \varphi(\epsilon, M)),$$

where $\varphi = \psi_{\ell-1} \diamondsuit \cdots \diamondsuit \psi_1$, if $\ell \ge 2$. If $\ell = 1$, we let φ be the function satisfying $\varphi(\epsilon, ||x||) = \epsilon$.

 $(f \diamondsuit g)(a, b) \coloneqq f(a + g(a, b), b).$

Motivation	Error bounds	The exponential cone	Amenable cone
00000000	000000000000000000000000000000000000000	00000	0000000

Main result

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let \mathcal{K} be a closed convex cone such that $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$. Let

 $\mathcal{F}_{\ell} \subsetneq \cdots \subsetneq \mathcal{F}_1 = \mathcal{K}$

be a chain of faces of \mathcal{K} together with $z_i \in \mathcal{F}_i^* \cap \mathcal{L}^{\perp} \cap \{a\}^{\perp}$ such that

 $(\mathcal{L} + a) \cap \operatorname{ri} \mathcal{F}_{\ell} \neq \emptyset.$

and $\mathcal{F}_{i+1} = \mathcal{F}_i \cap \{z_i\}^{\perp}$ for every *i*. Let ψ_i be a facial residual function for \mathcal{F}_i , z_i . Then, after positive rescaling the ψ_i , for every bounded set *B* there are constants $\kappa > 0$, M > 0 such that if $x \in \operatorname{span} \mathcal{K} \cap B$ satisfies the inequalities

 $\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \operatorname{dist}(x,\mathcal{L}+a) \leq \epsilon,$

we have

dist
$$(x, (\mathcal{L} + a) \cap \mathcal{K}) \leq \kappa(\epsilon + \varphi(\epsilon, M)),$$

where $\varphi = \psi_{\ell-1} \diamondsuit \cdots \diamondsuit \psi_1$, if $\ell \ge 2$. If $\ell = 1$, we let φ be the function satisfying $\varphi(\epsilon, ||x||) = \epsilon$.

 $(f \diamondsuit g)(a, b) \coloneqq f(a + g(a, b), b).$

Error bounds

The exponential cone 00000 Amenable cones

Main result - simplified

Suppose $\mathcal{K} \cap (\mathcal{L} + a) \neq \emptyset$. Let

$$d(x) \coloneqq \operatorname{dist}(x, \mathcal{L} + a) + \operatorname{dist}(x, \mathcal{K}).$$

Then, for every B, we have

dist $(x, (\mathcal{L} + a) \cap \mathcal{K}) \le \kappa_B(d(x) + \varphi(d(x), M_B)), \quad \forall x \in B$

where φ is a composition of **facial residual functions**.

Error bounds

The exponential cone 00000 Amenable cones

Facial Residual Functions (FRFs) - Examples

• If \mathcal{K} is a symmetric cone, then

$$\psi_{\mathcal{F},z}(\epsilon,t) = \kappa \epsilon + \kappa \sqrt{\epsilon t}$$

is a FRF, for some $\kappa > 0$. (L'21)

• If \mathcal{K} is polyhedral, then $\psi_{\mathcal{F},z}(\epsilon, ||x||) = \kappa \epsilon$ is a FRF, for some $\kappa > 0$.

Reminder:

$$\operatorname{dist}(x,\mathcal{K}) \leq \epsilon, \quad \langle x,z \rangle \leq \epsilon, \quad \operatorname{dist}(x,\operatorname{span}\mathcal{F}) \leq \epsilon$$

implies

dist
$$(x, \mathcal{F} \cap \{z\}^{\perp}) \leq \psi_{\mathcal{F},z}(\epsilon, ||x||).$$

Error bounds

The exponential cone 00000 Amenable cones

The case of symmetric cones - L'21

K: symmetric cone (psd matrices, second order cone and etc)
Facial residual function (FRFs): ψ_{F,z}(ε, t) = κε + κ√εt

Suppose $(\mathcal{L} + \mathbf{a}) \cap \mathcal{K} \neq \emptyset$. There exists $\gamma \ge 0$ such that for every bounded set B, there exists κ_B such that

 $\operatorname{dist}(x,(\mathcal{L}+a)\cap\mathcal{K}) \leq \kappa_B(\operatorname{dist}(x,\mathcal{L}+a) + \operatorname{dist}(x,\mathcal{K}))^{(2^{-\gamma})}, \quad \forall \ x \in B$

where γ is the number of facial reduction steps.

Error bounds

The exponential cone 00000 Amenable cones

Consequences for symmetric cone programming

$$\begin{array}{ll} \min_{x} & c^{T}x \\
\text{subject to} & Ax = b \\
& x \in \mathcal{K}
\end{array}$$

For the feasible set:

- Under Slater: Forward error = O(Backward Error).
- Without Slater: Forward error = $O((\text{Backward Error})^{2^{-\gamma}})$

For the optimal set:

- Strict complementarity holds: $x^* + s^* \in \operatorname{ri} \mathcal{K} \Leftrightarrow x^* \in \operatorname{ri} (\mathcal{K} \cap \{s^*\}^{\perp})$
 - Opt = { $x \mid c^T x = \theta, Ax = b, x \in \mathcal{K}$ } intersects ri($\mathcal{K} \cap \{s^*\}^{\perp}$)
 - Facial reduction finishes in 1 step.
- Under Strict complementarity: Forward error = $O(\sqrt{\text{Backward Error}})$

Error bounds

The exponential cone 00000 Amenable cones

Facial residual functions and g-amenability

 $\mathfrak{g}:\mathbb{R}_+\to\mathbb{R}_+{:}$ monotone nondecreasing function with $\mathfrak{g}(0)=0.$

Definition (g-amenability)

 $\mathcal{F} \trianglelefteq \mathcal{K}$ is g-amenable if for every bounded set B, there exists $\kappa > 0$ such that

dist $(x, \mathcal{F}) \leq \kappa \mathfrak{g}(\text{dist}(x, \mathcal{K})), \quad \forall x \in (\text{span } \mathcal{F}) \cap B.$

If all faces of \mathcal{K} are g-amenable, then \mathcal{K} is an g-amenable cone.

Suppose \mathcal{K}^1 and \mathcal{K}^2 are g-amenables

- There are calculus rules for the FRFs of $\mathcal{K}^1 \times \mathcal{K}^2$.
- A FRF of a face of \mathcal{K}^1 can be lifted to a FRF of the whole cone \mathcal{K}^1 .

Motivation	
00000000)

Error bounds

The exponential cone 00000 Amenable cones

Amenable cones

Definition (Amenable cones)

 \mathcal{K} is **amenable** if for every face \mathcal{F} of \mathcal{K} there is $\kappa > 0$ such that

dist $(x, \mathcal{F}) \leq \kappa \text{dist}(x, \mathcal{K}), \quad \forall x \in \text{span } \mathcal{F}.$

- Symmetric cones (e.g., PSD cone) are amenable ($\kappa=1)$
- Polyhedral cones are amenable
- Strictly convex cones are amenable. (*p*-cones, second order cones and so on)
- $\mathcal{K}_1, \mathcal{K}_2 \Rightarrow \mathsf{FRFs} \text{ of } \mathcal{K}_1 \times \mathcal{K}_2 \text{ are sums of FRFs of } \mathcal{K}_1 \text{ and } \mathcal{K}_2.$

The exponential cone •0000 Amenable cones

The exponential cone

$$\mathcal{K}_{\exp} := \left\{ (x, y, z) \mid y > 0, z \ge y e^{x/y} \right\} \cup \{ (x, y, z) \mid x \le 0, z \ge 0, y = 0 \}.$$

M	ot	iva	tic	n			
0	0	oc	0	0	0	00)

Error bounds

The exponential cone 00000 Amenable cones

The exponential cone

$$\mathcal{K}_{\exp} := \left\{ (x, y, z) \mid y > 0, z \ge y e^{x/y}
ight\} \cup \{ (x, y, z) \mid x \le 0, z \ge 0, y = 0 \}.$$

- Applications to entropy optimization, logistic regression, geometric programming and etc.
- Available in Alfonso, Hypatia, Mosek. https://docs.mosek.com/modeling-cookbook/expo.html.

V. Chandrasekaran, P. Shah

Relative entropy optimization and its applications. *Math. Program. 161, 1–32 (2017)*

The exponential cone

Amenable cones

(CFP)

Error bounds for the exponential cone - LLP'20

find x subject to $x \in (\mathcal{L} + a) \cap K_{exp}$

Four types of error bounds are possible:

- Lipschitzian error bound
- Hölderian error bound with exponent 1/2
- Entropic error bound: for every bounded set *B*, there exists $\kappa_B > 0$

 $\mathrm{dist}\;(\mathsf{x},(\mathcal{L}+\mathsf{a})\cap \mathit{K}_{\mathsf{exp}})\leq \kappa_{B}\mathfrak{g}_{-\infty}(\mathsf{max}(\mathrm{dist}\,(\mathsf{x},\mathcal{L}+\mathsf{a}),\mathrm{dist}\,(\mathsf{x},\mathit{K}_{\mathsf{exp}}))),\quad\forall\mathsf{x}\in B.$

 Logarithmic error bound: for every bounded set B, there exists κ_B > 0 dist (x, (L + a) ∩ K_{exp}) ≤ κ_Bg_∞(max(dist (x, L + a), dist (x, K_{exp}))), ∀x ∈ B.

The results above are **optimal**.

$$\mathfrak{g}_{-\infty}(t) := \begin{cases} 0 & \text{if } t = 0, \\ -t \ln(t) & \text{if } t \in (0, 1/e^2], \\ t + \frac{1}{e^2} & \text{if } t > 1/e^2. \end{cases} \quad \mathfrak{g}_{\infty}(t) := \begin{cases} 0 & \text{if } t = 0, \\ -\frac{1}{\ln(t)} & \text{if } 0 < t \leq \frac{1}{e^2}, \\ \frac{1}{4} + \frac{1}{4}e^2t & \text{if } t > \frac{1}{e^2}. \end{cases}$$

Viotivation	Error bounds	The exponential cone	Amenable c
00000000	000000000000000000000000000000000000000	00000	0000000

Strange error bounds

From the exponential cone we can:

• Obtain sets that **do not have** a Hölderian error bound, but have a logarithmic error bound:

$$\mathcal{F}_{\infty} = \mathcal{K}_{exp} \cap \{z\}^{\perp},$$

where z = (0, 0, 1).

• Obtain sets that satisfy a Hölderian bound for all $\gamma \in (0,1)$ but not $\gamma = 1$. Furthermore, the best error bound is an entropic one.

$$\mathcal{F}_{-\infty} = \mathcal{K}_{exp} \cap \{z\}^{\perp},$$

where z = (0, 1, 0).

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	00000000000
Final remark	(S		

- Much more stuff in the paper! Ex: direct products, techniques for obtaining FRFs and so on.

Scott B. Lindstrom; L and Ting Kei Pong

Error bounds, facial residual functions and applications to the exponential cone

arXiv:2010.16391

Other advertisement:

T. Liu and L.

Convergence analysis under consistent error bounds arXiv:2008.12968

L: Vera Roshchina and James Saunderson Amenable cones are particularly nice arXiv:2011.07745

Motivation
000000000

The exponential cone 00000 Amenable cones

Amenable cones

Definition (Amenable cones)

 \mathcal{K} is **amenable** if for every face \mathcal{F} of \mathcal{K} there is $\kappa > 0$ such that

dist $(x, \mathcal{F}) \leq \kappa \text{dist}(x, \mathcal{K}), \quad \forall x \in \text{span } \mathcal{F}.$

- Symmetric cones (e.g., PSD cone) are amenable ($\kappa=1$)
- Polyhedral cones are amenable
- Strictly convex cones are amenable. (*p*-cones, second order cones and so on)
- Amenability is preserved under linear isomorphism and direct products

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	0000000000

$$\begin{split} \mathcal{F} \text{ is a face of } \mathcal{K} & \stackrel{\text{def}}{\longleftrightarrow} \quad \mathcal{F} \trianglelefteq \mathcal{K} \\ \mathcal{K}^* & := \{ y \mid \langle y, x \rangle \ge 0, \forall x \in \mathcal{K} \} \end{split}$$

- Projectionally exposed cone → ∀F ≤ K there exists a projection such that PK = F.
- **2** Amenable cones $\stackrel{\text{def}}{\iff}$ for every face \mathcal{F} of \mathcal{K} there is $\kappa > 0$ such that

$$\operatorname{dist}(x,\mathcal{F}) \leq \kappa \operatorname{dist}(x,\mathcal{K}), \quad \forall x \in \operatorname{span} \mathcal{F}$$

- Facially exposed cone $\stackrel{\text{def}}{\longleftrightarrow}$ $\forall \mathcal{F} \trianglelefteq \mathcal{K}, \quad \exists z \in \mathcal{K}, \text{ s.t. } \mathcal{F} = \mathcal{K} \cap \{z\}^{\perp}.$

Error bounds

The exponential cone 00000 Amenable cones

Comparison of exposedness properties

Known results:

- Facially exposed ⇐ Nice ⇐ Amenable ⇐ Projectionally exposed.
- dim $\mathcal{K} \leq$ 3: Facially exposed \Leftrightarrow Projectionally exposed (Barker and Poole, SIADM'87)
- There exists a 4D cone that is facially exposed but not nice (Vera, SIOPT'14).

New results (see LRS'20):

- There exists a 4D cone that is nice but not amenable
- In dimension 4 or less: Amenable \Leftrightarrow Projectionally exposed.

Figure: A 3D slice of a 4D convex cone that is nice but not amenable

Motivation
000000000

Error bounds

The exponential cone 00000 Amenable cones

Hyperbolicity cone

Let

- $p: \mathbb{R}^n \to \mathbb{R}$: homogenous polynomial
- $e \in \mathbb{R}^n$, with p(e) > 0

Hyperbolic polynomial

if for every $x \in \mathbb{R}^n$

$$t\mapsto p(te-x)$$

has only real roots, then p is **hyperbolic** along e.

For $x \in \mathbb{R}^n$, denotes the roots of

$$t \mapsto p(te - x)$$

by $\lambda_1(x), \ldots, \lambda_r(x)$.

Hyperbolicity cones

$$\Lambda_+(p,e) := \{x \in \mathbb{R}^n \mid \lambda_i(x) \ge 0, i = 1, \dots, r\}.$$

Motivation	Error bounds	The exponential cone	Amenable cones
00000000	000000000000000000000000000000000000000	00000	000000000000

Example

Let

•
$$p(X): S^n \to \mathbb{R}, \ p(X) = \det X.$$

•
$$e = I_n$$
.

The roots of

$$t\mapsto p(tI_n-X)=\det(tI_n-X)$$

are the eigenvalues of X.

$$\Lambda_+(p, e) = \mathcal{S}^n_+.$$

Motivation	
000000000	

The exponential cone 00000

Some history

- Studied in the 50's by Gårding in the context of partial differential equations.
- Güler brought them to attention of optimizers in 97.
 - $-\log p$ is a self-concordant barrier for the interior of $\Lambda_+(p, e)$.
- Renegar proved key results on the structure of $\Lambda_+(p, e)$ in 2005.

rror bounds

The exponential cone 00000 Amenable cones

Some classes of cones

More general	Hyperbolicity cone
	Homogeneous cone
	Symmetric cone
	PSD cone
	Second order cone
Less general	\mathbb{R}^{n}_{+}

- Example of cone that is not a hyperbolicity cone: exponential cone
- Renegar proved that hyperbolicity cones are facially exposed.

The exponential cone 00000 Amenable cones

Some classes of cones

	Hyperbolicity cone
Slice of a PSD cone (spectrahedral)	Homogeneous cone Symmetric cone PSD cone Second order cone \mathbb{R}^n_+

Spectrahedral cone

 \mathcal{K} is spectrahedral $\stackrel{\text{def}}{\iff} A(\mathcal{K}) = S_+^n \cap V$ holds for some injective linear map A, subspace V and n.

Motivation
000000000

The exponential cone 00000 Amenable cones

Lax conjecture

Spectrahedral cone

 \mathcal{K} is spectrahedral \iff $A(\mathcal{K}) = S_+^n \cap V$ holds for some injective linear map A, subspace V and n.

Generalized Lax Conjecture

Is every hyperbolicity cone spectrahedral?

Error bounds

The exponential cone 00000 Amenable cones

Recent results on amenability

A few results (L, Roshchina and Saunderson)

- Hyperbolicity cones and spectrahedral cones are amenable.
- Amenability is preserved by intersections and taking slices.
- A cone constructed from an amenable compact convex set is amenable.

Motivation	
000000000	

The exponential cone 00000 Amenable cones

Open questions

- Is there an amenable cone that is not projectionally exposed? (dim $\mathcal{K} \ge 5$ must hold!)
- Which cones are projectionally exposed?
- L, V. Roshchina and J. Saunderson

Amenable cones are particularly nice.

- arxiv:2011.07745

L, V. Roshchina and J. Saunderson

Hyperbolicity cones are amenable.

arxiv:2102.06359

Thank you!

Figure: The exponential cone, its faces and exposing vectors

FRFs without projection - LLP'21

$$\inf\left\{\frac{\|w-v\|^{\alpha}}{\|w-u\|}\right\} > 0 \quad \Rightarrow \quad \varphi(\epsilon,t) \coloneqq \kappa_t \epsilon + \kappa_t \epsilon^{\alpha} \text{ is FRF}$$

$$\inf\left\{\frac{\mathfrak{g}(\|w-v\|)}{\|w-u\|}\right\} > 0 \quad \Rightarrow \quad \varphi(\epsilon,t) \coloneqq \kappa_t \epsilon + \kappa_t \mathfrak{g}(2\epsilon) \text{ is FRF}$$