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Feasibility problems over convex cones

Consider the following feasibility problem over a convex cone K.

find x
subjectto xe€ (L+a)NK

@ /C: closed convex cone contained in some space &.
@ L: subspace contained in £.
@ acé.
(L + ais an affine space)
[§ Scott B. Lindstrom; L and Ting Kei Pong
Error bounds, facial residual functions and applications to the

exponential cone
arXiv:2010.16391
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Motivation

Let || - || be the Euclidean norm and fix x € &.

dist (x, L+ a) =inf{|[x —y| | y € L+ a}
dist (x, ) = inf{Jlx — yl| | y € K}
dist (x,(L+a)NK)=inf{||[x—y| |y € (L+a)NK}

Fundamental question

Can we estimate dist (x, (£ + a) N K) using dist (x, £ + a) and
dist (x, KC)?

= X

@ Convergence analysis often leads to this type of questions.
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Holderian error bounds

Cy, Go: closed convex sets.
C = Cl n C2

Definition (Holderian error bound)

C;, G, satisfy a Holderian error bound L for every bounded set B
there exist g > 0, vg € (0, 1] such that

dist (x, C) < Op(dist (x, C1) + dist (x, &))" V¥V x € B.

If vg = v € (0,1] for all B, the bound is uniform. If the bound is
uniform with v = 1, we call it a Lipschitzian error bound.

Some known results:
e ri G Nri G # () = Lipschitzian
e (1, G, are polyhedral = Lipschitzian (Hoffman's Lemma)
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Conic results

e Ci: affine space, C;: PSD cone = Uniform Holderian (Sturm’s error

bound)
o (: affine space, C;: amenable cone = generalized error bound

holds (L'21)
o (i: affine space, Co: Symmetric cone = Uniform Holderian (L'21)

E

Amenable cones: error bounds without constraint qualifications.
Mathematical Programming, 186:1-48, 2021.

@ J. F. Sturm.
Error bounds for linear matrix inequalities.
SIAM Journal on Optimization, 10(4):1228-1248, Jan. 2000.

Today's goals
@ Prove error bounds for cones that might not be amenable
™
@ Constraint qualifications are forbidden! &

@ Apply our theory to the exponential cone.
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Ingredient 1 - Error bounds under a constraint qualification

find x (CFP)
subjectto xe€(L+a)NK

Proposition (An error bound for when a face satisfying a CQ is known)

Let 7 < K be such that
@ F contains KN (L + a)
QO (iFA)N(L+a)#£D

Then, for every bounded set B, there exists kg > 0 such that

dist (x, LN (L + a)) < kp(dist (x, F) + dist (x, £ + a)), Vx € B.

4

It is not an error bound with respect to £ + a and C, but it is close.
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Ingredient 2 - Facial Reduction

Theorem (The facial reduction theorem)

Suppose (CFP) is feasible. There is a chain of faces

and vectors (zi,...,z¢—1) such that:

@

e

FeC--CF1=K

Forall i€ {1,...,£ —1}, we have
ze FinLtn{a™,
Finn=Fin{z}".

Fen(L+2a)=KN(L+ a) and (riFe) N (L + a) £ 0.

L, M. Muramatsu and T. Tsuchiya.
Facial reduction and partial polyhedrality.
SIAM Journal on Optimization, 28(3), 2018 (http://arxiv.org/abs/1512.02549).

J. M. Borwein and H. Wolkowicz.
Regularizing the abstract convex program.

Journal of Mathematical Analysis and Applications, 83(2):495 — 530, 1981. /2
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Ingredient 3 - Facial Residual Functions
Let
@ [C: closed convex pointed cone.
e F: face of €
e ze F*
Fact:

Fn{z}t = Knspan F N {z}*.

Definition (Facial residual function for =~ and z with respect to K)

If 7. : Ry x Ry — R, satisfies

© 7. is nonnegative, monotone nondecreasing in each argument and (0, a) = 0
for every a € R

© whenever x € span K satisfies the inequalities

dist (x, ) <€, (x,z) <e, dist(x,spanF) <e

we have:

dist (x, F N {z}) < 9r 2 (e, |x]))-
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Main result

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let K be a closed convex cone such that KN (L + a) # (. Let
FeC---CF1=K

be a chain of faces of K together with z; € F; N L N {a}* such that
(L+a)NriFe £ 0.

and Fiy1 = FiN{z}" for every i. Let 1 be a facial residual function for F;,
zj. Then, after positive rescaling the 1);, for every bounded set B there are
constants k > 0, M > 0 such that if x € span C N B satisfies the inequalities

dist (x, £) <, dist(x,L+ a) <e,

we have

dist (x, (£ + a) N K) < &(e + (e, M)),
where @ = 11 -+ Oy, iF£ > 2. IF£ =1, we let p be the function
satisfying (e, || x||) = €.

(fOg)(a, b) = f(a+ g(a, b), b).
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Main result

Theorem (Error bound without amenable cones, Lindstrom, L., Pong)

Let K be a closed convex cone such that KK N (L + a) # 0.

Then for every bounded set B there are
constants k > 0, M > 0 such that if x € span KC N B satisfies the inequalities

dist (x, £) <, dist(x,L+ a) <e,

we have

dist (x, (£ + a) N K) < &(e + (e, M)),
where ¢ = p_1 - Oy, iFL > 2. If £ =1, we let p be the function
satisfying (e, || x||) = €.

(fOg)(a, b) = f(a+ g(a, b), b).
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Facial Residual Functions (FRFs) - Examples

o If IC is a symmetric cone, then

Vr (€, t) = we + ket
is a FRF, for some x > 0. (L'21)
e Recovers Sturm'’s error bound when K = S.

o If K is polyhedral, then ¢ £ (¢, ||x||) = ke is a FRF, for some k > 0.

Reminder:
dist (x,K) <€, (x,z) <e¢, dist(x,spanF) <e

implies
dist (x, FN {z}*) < YrF (€ Ix]]).

11/21



Introduction Error bounds The exponential cone
0000 00000080 00000000

FRFs without projection - LLP'21

[lw — vl|

AN P{Z}LV
\\ /W*UH
u—= P]:W

_ @
inf {HWVH} >0 = (e t) = ke+ ree” is FRF

> {ﬁ!(”"V—"”)} S0 = g(e,t) = ke + reg(2€) is FRF
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Facial residual functions and g-amenability

g : Ry — Ry: monotone nondecreasing function with g(0) = 0.

Definition (g-amenability)

F < K is g-amenable if for every bounded set B, there exists x > 0 such that
dist (x, F) < xg(dist (x, K)), Vx € (spanF)N B.

If all faces of KC are g-amenable, then K is an g-amenable cone.

Suppose K! and K? are g-amenables
@ There are calculus rules for the FRFs of K! x k2.
@ A FRF of a face of K can be lifted to a FRF of the whole cone K.
@ Amenability is recovered when g = | - |

o Amenable cones must be facially exposed.
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The exponential cone

Kexp ::{(X,y,z)|y>0,22yex/y}u{(x,y,z)|X§O,220,y=0}.
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The exponential cone

Kexp ::{(X,y,z)\y>0,22yex/y}u{(x,y,z)|x§0,zZO,y:O}.

K:xp = {(Xa)/az) | x <0,ez> _Xey/x} U{(x,y,2) | x=0,ez>0,y > 0}.
@ Not exposed! (So not amenable...)
@ Applications to entropy optimization, logistic regression, geometric
programming and etc.

@ Available in Alfonso, Hypatia, Mosek.
https://docs.mosek. com/modeling-cookbook/expo.html.

@ V. Chandrasekaran, P. Shah
Relative entropy optimization and its applications.
Math. Program. 161, 1-32 (2017)
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The faces of the exponential cone

(©)

exposed extreme rays (1D faces) parametrized by 5 € R:

Fg = {(—6)/ +y,y,e7"y) ‘ y €0, oo)} ) (amenable)
an “exceptional” exposed extreme ray:
Foo ={(x,0,0) | x < 0}. (amenable)
a non-exposed extreme ray: Fpe:
Fre ={(0,0,2) | z> 0}. (g-amenable, not amenable)
a single 2D exposed face:
Fooo ={(x,y,2) | x<0,z>0,y =0}, (amenable)

where F, and F,. are the extreme rays of F_..
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The facial residual functions - 1D exposed faces

Q 55 = {(—ﬂy+y7y, el=fy) ‘ y€ [0700)}:

Vi 2(€, t) == ke + p(t)\/e

Q@ Foo ={(x,0,0) | x <0}:
@ ifz, >0, then:
Vi 2(€, t) = p(t)e
@ ifz, =0, then:

Vi 2(€, t) = ke + p(t)goo(€),
ift=0,
foolt) = — 2 ifo<t< 3,

Lyt ift> %

o
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The facial residual functions - The 2D face and the
non-exposed face

0 if t=0,
0-oo(t) := ¢ —tin(t) if t€(0,1/€?],
t+%  if t>1/e%

Q Foo ={(x,y,2) | x<0,z>0,y =0}:
(€, t) 1= re + p(t)g—oo(e)
Q@ F.. ={(0,0,z)| z>0}:

Vr L6 t) =o(t)e+ o(t)g—oo(€)
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Error bound for problems over the exponential cone

find x (CFP)
subject to  x € (£ + a) N Kexp

Let z € (Kop)* NLEN{a}t, 2 #0. Let F = Kop N {2},
@ F = {0}: Lipschitzian error bound.
@ F = Fp: a Holderian error bound with exponent 1/2.

@ F = F, either a Lipschitzian or a log-type error bound holds depending
on the exposing vector.

@ F = F_w, an entropic error bound: for every bounded set B, there
exists kg > 0

dist (x, (£ + a) N Kexp) < KBI—oo(max(dist (x, £ + a), dist (x, Kexp))), Vx € B.

The results above are optimal.
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Strange error bounds

From the exponential cone we can:

@ Obtain sets that do not have a Holderian error bound, but have a
logarithmic error bound:

e Or, a function that does not have a KL exponent.
Foo = Koy N {2},
where z = (0,0, 1).

@ Obtain sets that satisfy a Holderian bound for all v € (0,1) but not
v = 1. Furthermore, the best error bound is an entropic one.

o Or, a KL function whose exponent can be arbitrary close to 1/2 but
not 1/2.

Ffoo = Kexp N {Z}J_»
where z = (0, 1,0).
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Final remarks

@ Much more stuff in the paper! Ex: direct products, techniques for
obtaining FRFs and so on.

[§ Scott B. Lindstrom; L and Ting Kei Pong
Error bounds, facial residual functions and applications to the

exponential cone
arXiv:2010.16391

Other advertisement:

@ L; Vera Roshchina and James Saunderson
Amenable cones are particularly nice (MS24)
arXiv:2011.07745

[ T.LiuandlL.
Convergence analysis under consistent error bounds (MS69)
arXiv:2008.12968
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Figure: The exponential cone, its faces and exposing vectors
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