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ABSTRACT
We suppose the existence of an oracle which solves any semidefinite
programming (SDP) problem satisfying strong feasibility (i.e. Slater’s
condition) simultaneously at its primal and dual sides. We note that
such an oracle might not be able to directly solve general SDPs even
after certain regularization schemes are applied. In this work we fill
this gap and show how to use such an oracle to ‘completely solve’ an
arbitrary SDP. Completely solving entails, for example, distinguish-
ingbetweenweak/strong feasibility/infeasibility anddetectingwhen
the optimal value is attained or not. We will employ several tools,
including a variant of facial reduction where all auxiliary problems
are ensured to satisfy strong feasibility at all sides. Ourmain technical
innovation, however, is an analysis of double facial reduction, which
is the process of applying facial reduction twice: first to the original
problem and then once more to the dual of the regularized problem
obtained during the first run. Although our discussion is focused on
semidefinite programming, themajority of the results are proved for
general convex cones.
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1. Introduction

Consider the following pair of primal and dual linear semidefinite programs (SDPs).

inf
x
〈c, x〉 (SDP-P)

subject to Ax = b

x ∈ Sn
+

sup
y
〈b, y〉 (SDP-D)

subject to c−A∗y ∈ Sn
+,

where Sn+ denotes the cone of n× n symmetric positive semidefinite matrices, which is
contained in Sn (the space of n× n real symmetric matrices). Here A : Sn→ Rm is a
linear map, b ∈ Rm, c ∈ Sn andA∗ denotes the adjoint map ofA. In addition, we assume
that both Rm and Sn are equipped with the usual Euclidean product and the trace inner
product, respectively. We will use the same symbol 〈·, ·〉 to express both inner products.

We start with the following observation.
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To the best of our knowledge, all (or almost all) methods for solving SDP require some kind
of assumption on the problems (SDP-P) and (SDP-D) in order for its convergence theory to
work. In addition, there seems to be no method that can solve arbitrary SDP instances and
distinguish between all kinds of ill-behaviour that can happen in semidefinite programming.

On one hand, it might seem almost obvious that some condition must be imposed on
the pair (SDP-P) and (SDP-D) in order to get meaningful convergence results, which is the
pattern established in classical nonlinear programming since the early days, where many
convergence results required some constraint qualification to hold. On the other hand, for
linear programming we have the simplex method, which, at least in theory, is able to solve
any linear program and detect all possible outcomes including infeasibility and unbound-
edness.Given that semidefinite programming is one of themost natural extensions of linear
programming, it is somewhat disappointing that, as of this writing, we still cannot claim
to be able to solve SDPs in the same thorough way.

However, there are indeed classes of SDPs that we can reasonably claim that are solvable
by current methods. One of those classes consists of the SDPs for which strong feasibility
(also called Slater’s condition) holds at both (SDP-P) and (SDP-D). They are solvable, for
instance, by using interior pointmethods [2,29]. In this paper, we aim to show the following
result.

Supposewe have access to an oracle that can solve any SDP instance, provided that the instance
is both primal and dual strongly feasible. Then, we can ‘completely solve’ any SDP instance
with polynomially (in n) many calls to this oracle.

Later in Section 1.2 we state our results more precisely including a suitable definition of
‘completely solving’ but, for now, we give some background to our research and results.

1.1. Background and previous works

We now discuss briefly how strong feasibility is connected with some research trends in
continuous optimization.

• Interior point algorithms and software.Most modern IPM softwares [9,44,47] including
the commercial solver Mosek do not require explicit knowledge of an interior feasi-
ble point beforehand. SeDuMi [44], for instance, transforms a standard form problem
into the so-called homogeneous self-dual formulation, which has a trivial starting point.
SDPA [9] and SDPT3 [47] use an infeasible interior point method. The fact that these
methods can work without explicit knowledge of an interior feasible point, does not
mean that they do not require the existence of an interior feasible point. Quite the oppo-
site, the absence of interior feasible points may introduce theoretical and numerical
difficulties in recovering a solution for the original problem. Also, detection of infea-
sibility is a complicated task. Some interior point methods, such as the one discussed in
[30] by Nesterov, Todd and Ye, are able to obtain a certificate of infeasibility if the prob-
lem is dual or primal strongly infeasible, but the situation is less clear in the presence
of the so-called weak infeasibility [22]. These issues are also discussed by Karimi and
Tunçel in [14], in the context of their software DDS (Domain-Driven Solver) [13,15].

• Ramana’s extended dual. Ramana [41,42] developed an alternative duality theory
for (SDP-D) beyond the usual Lagrangian duality. Remarkable features of Ramana’s dual
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include the fact that whenever the optimal value of an SDP is finite, its Ramana’s dual
attains the same optimal value without any further assumptions. However, Ramana’s
dual is not necessarily suitable to be solved by IPMs due to the fact that it does not
ensure the existence of interior feasible points at both sides.

• Facial reduction. Denote by FS
D, the set of feasible slacks of (SDP-D), i.e.

FS
D = {s ∈ Sn

+ | ∃y, s = c−A∗y}.
Let FD

min be the minimal face of Sn+ which contains FS
D. If we replace Sn+ by FD

min
in (SDP-D), then the new (SDP-D) will be strongly feasible, because FD

min is character-
ized as the unique face for whichFS

D intersects the relative interior ofFD
min. The process

of finding FD
min is called facial reduction [35,51] and was developed originally by Bor-

wein andWolkowicz [4,5] for convex optimization with conic constraints. Descriptions
for the conic linear programming case have appeared, for instance, in Pataki [35] and in
Waki andMuramatsu [51].Wewill overview facial reduction inmore detail in Section 3.

However, one important point is that facial reduction only guarantees that strong
feasibility is satisfied at one side of the problem. So, again, even this regularized problem
might fail to have interior solutions at both primal and dual sides.

We remark that strong feasibility at only one of the sides of the problem can also be
a source of numerical difficulties. In Section 2 of [52], Waki, Nakata and Muramatsu
show an instance satisfying strong feasibility at the primal side, but not at the dual side.
Its optimal value is zero but both SDPA [9] and SeDuMi [44] output 1 instead.

• Algebraic approaches. Henrion, Naldi and Din described an algebraic approach to the
problem of obtaining a feasible solution to (SDP-D), see [10,11]. Interesting features of
their algorithm include, among others, the fact that their algorithm is implementable in
exact arithmetic (as opposed to floating point arithmetic) and that, as long as (SDP-D)
satisfies certain genericity assumptions, the algorithm can find solutions even in degen-
erate cases when strong feasibility is not satisfied. In addition, when a solution is found, a
so-called rational parametrization is provided for it. A description of their package Spec-
tra is given in [11]. Drawbacks, however, include that inmost cases, only small instances
can be solved, see Section 1 of [11]. Furthermore, optimization problems cannot be
solved directly.

There is a growing body of research aimed at understanding SDPs and conic linear pro-
grams having pathological behaviours such as nonzero duality gaps and weak infeasibility.
Here we will mention a few of them. A problem is called weakly infeasible if there is no
feasible solution but the distance between the underlying affine space and the cone under
consideration is zero. Weak infeasibility is known to be very hard to detect numerically,
see for instance Pólik and Terlaky [38]. In [50], Waki showed that weakly infeasible prob-
lems sometimes arise from polynomial optimization. There is also a discussion on weak
infeasibility semidefinite programming and second-order cone programming in [22,24],
respectively. Some of the results in [22] were generalized to arbitrary closed convex cones
by Liu and Pataki, see [18] for more details. See also [23], where some results of [18] on
weakly infeasible problems are sharpenedwhen the polyhedral faces of the underlying cone
are taken into account.

It is hard to obtain finite certificates of infeasibility for SDPs, because there is no straight-
forward extension of Farkas’ Lemma for non-polyhedral cones. Another issue is that, as
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shown by Porkolab and Khachiyan [39], even a reasonably sized SDPmay only have expo-
nentially small feasible solutions, which makes it hard to detect feasibility/infeasibility
numerically.

Nevertheless, the first finite infeasibility certificate was obtained by Ramana in [41]
using his extended duality theory. Since then, Sturm mentioned the possibility of obtain-
ing a finite certificate for infeasibility by using the directions produced in his regularization
procedure, see page 1243 of [45]. More recently, Liu and Pataki have also obtained finite
certificates through elementary reformulations [19]. Interestingly, Klep and Schweighofer
[16] also obtained certificates through a completely different approach using tools from real
algebraic geometry. As we move from SDPs to conic linear programs over arbitrary cones,
facial reduction seems to one of the few approaches that can provide finite certificates of
infeasibility see, for example, [18].

In [52],Waki, Nakata andMuramatsu discussed SDP instances for which known solvers
failed to obtain the correct answer and in one case, this happened even though the prob-
lem had an interior feasible point at the primal side. In [32,34], Pataki gave a definition of
‘bad behaviour’ and showed that all SDPs in that class can be put in the same form, after
performing an elementary reformulation. A discussion on duality gaps and many interest-
ing examples of pathological SDPs are given by Tunçel and Wolkowicz in [48]. Pataki has
recently provided an extensive study of duality gaps in semidefinite programming in [33].
He showed, for instance, that all SDPs with positive duality gap and m = 2 (i.e. the dual
problem has two variables) have a common reformulation, see Theorem 1 therein.

1.2. Summary and contributions of this work

We consider the following oracle, which we will denote byOint.

The interior point oracleOint for SDPs
Input : The problem data:A, b, c. Both (SDP-P) and (SDP-D) must be strongly

feasible.
Output: A zero duality gap optimal solution pair x∗, y∗. That is, x∗ and y∗ satisfy

〈c, x∗〉 = 〈b, y∗〉
c−A∗y∗ ∈ Sn

+
Ax∗ = b

x∗ ∈ Sn
+.

We can regard Oint as a machine running an idealized version of either the homoge-
neous self-dual embedding method [7,26,40], an infeasible interior point method [30], the
ellipsoid method or even an augmented Lagrangian method. An important point is that
no assumption is made on the inner workings of the oracle. Now we are ready to define the
meaning of completely solving an SDP.

Definition 1.1 (Completely solving (SDP-D)): An algorithm, procedure or a scheme is
said to completely solve (SDP-D), if it receives as input A, b, c and ε > 0 and achieves the
following goals.
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(a) It decides whether the (SDP-D) is feasible or not.
(b) When (SDP-D) is feasible, it computes the optimal value. If the optimal value is

attained, it computes an optimal solution. If the optimal value is finite but not attained,
it computes an ε-optimal solution. If (SDP-D) is unbounded (i.e. θD = +∞) thismust
be detected.

(c) When (SDP-D) is infeasible, it correctly distinguishes between strong infeasibility
and weak infeasibility. If (SDP-D) is weakly infeasible, then it finds a matrix that is
arbitrarily close to feasibility (this will be made precise later).

Although we focus on semidefinite programming, the majority of our results will be
proved for general conic linear programs (CLPs). Keeping this remark in mind, we now
state our contributions in this paper.

(1) We present an algorithm for completely solving general CLPs, provided that we
can solve certain auxiliary problems that are strongly feasible, see Section 4 and
Algorithm 4. In particular, we will show that an arbitrary SDP can be completely
solved by O(n) calls to Oint. This implies that even though an arbitrary SDP may
have unfavourable properties, we can always completely solve it in the sense of
Definition 1.1 if we assume thatwe are capable of solving instances that are both primal
and dual strongly feasible. An important feature of our approach is that it is method
agnostic and does not rely in any way on the inner working of Oint. See Appendix 2
for an example of applying Algorithm 4 to a particularly ill-behaved instance.

(2) We present a detailed discussion of double facial reduction for general conic linear
programs, which is the process of applying facial reduction twice: first to an CLP and
then, to the dual of the regularized CLP obtained at the first step.

Through double facial reduction, whenever the optimal value of (SDP-D) is finite,
we are ensured to obtain a new pair of primal and dual strongly feasible problems and
whose common optimal value coincides with the optimal value of (SDP-D).

Although we cannot always recover optimal solutions for (SDP-D) from this new
pair of problems (after all, (SDP-D) might not even have optimal solutions in the first
place), we will show how it is possible to obtain feasible solutions that are arbitrar-
ily close to optimality, for any desired accuracy, by using the directions that appear
when applying facial reduction. See Section 4.2 and Algorithm 2 for more details. The
discussion on obtaining almost optimal solution leads naturally to an approach for
obtaining almost feasible solution for weakly infeasible problems and this is discussed
in Section 4.3.

(3) We present several technical results about facial reduction that we believe might be of
independent interest. For example, we show how to perform facial reduction by solv-
ing auxiliary problems that are ensured to be both primal and dual strongly feasible,
see Lemma 3.4 and Algorithm 1.

We also provide a technical result on how the feasibility properties of a problem
might change when facial reduction is applied to its dual, see Proposition 4.2 and
Theorem 4.1.

We remark that this paper is a thorough extension and reformulation of an earlier tech-
nical report [21], where the results were only proved for semidefinite programming by
different techniques.
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1.3. Limitations of this work

A limitation of this work is that the algorithm for completely solving conic linear pro-
grams (Algorithm 4) is somewhat hypothetical. This is because, except in very special cases
[28,49,53], we cannot solve exactly an SDP even if it is primal and dual strongly feasible.
Usually, the best we can do is to compute solutions that are approximately feasible and
approximately optimal to some specified tolerance ε > 0 or, under special circumstances,
provide a rational parametrization to the solution set as in [10,11]. So, strictly speaking,
only an approximate version of the oracleOint might be practically implementable.

Missing from our analysis is how to deal with the case where there is some imprecision
in the answer returned by Oint. This is a very complex issue because since regular-
ity conditions might fail, small perturbations in the input data might lead to problems
whose optimal values are vastly different. Furthermore, impreciseness whilst doing facial
reduction might lead to a wrong face being computed and feasible solutions could be
inadvertently removed.

We believe however, that the analysis of the exact case is an important stepping stone
and we see a similar pattern in many subareas of optimization. For example, for aug-
mented Lagrangian methods, understanding the behaviour of the algorithm when sub-
problems are solved exactly seems to be quite important for getting the larger picture of
the algorithm and its convergence analysis, even though, in practice, the subproblems are
only approximately solved.

We remark that related approaches by de Klerk, Roos and Terlaky [7] and Perme-
nter, Friberg and Andersen [36] also assume that exact solutions are obtainable. However,
numerical experiments are provided in [36] to check how their approach fare under
inexactness. We provide a detailed comparison between [7,36] and our approach in
Section 6.

1.4. Structure of this paper

This paper is organized as follows. Section 2 discusses the notation used throughout the
paper and contains a review of the necessary notions from convex analysis. Some technical
aspects related to the faces ofSn+ and interior point oracleOint are discussed in Section 2.2.
Section 3 presents a facial reduction algorithm that is suitable to be used in conjunction
with Oint. Section 4 discusses double facial reduction and how it can be used to obtain
almost optimal solutions and analyse weak infeasibility. Section 5 contains the description
of an algorithm for completely solving a general conic linear programwhich can be adapted
to use Oint when the underlying cone is Sn+. Section 6 contains a discussion on related
approaches. Section 7 concludes this work.

2. Preliminary discussion and review of relevant notions

Let C ⊆ E be a closed convex set contained in a real finite dimensional space E . Its relative
interior, closure, linear span and dimension are denoted by riC, clC, spanC and dimC,
respectively. We assume that E is equipped with some inner product 〈·, ·〉 and we will
denote by C⊥ the subspace of E which contains the elements orthogonal to C with respect
to 〈·, ·〉. We will denote by ‖·‖ the norm induced by 〈·, ·〉. For a pair of sets C,D ⊆ E we
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define the distance between C and D as

dist (C,D) := inf{‖x− s‖ | x ∈ C, s ∈ D}.

If x ∈ E , we will use dist (x,C) as a shorthand for dist ({x},C).
IfA is a linear map, we will denote its image, kernel and adjoint by rangeA, kerA and

A∗, respectively.
ForK ⊆ E a closed convex cone, we denote by linK the lineality space ofK, i.e.

linK := K ∩ −K.

We denote byK∗ the dual cone ofK:

K∗ := {x ∈ E | 〈s, x〉 ≥ 0, ∀ s ∈ K}.
A closed convex subset F contained inK is said to be a face ofK if

s, ŝ ∈ K,
s+ ŝ
2
∈ F ⇒ s, ŝ ∈ F .

The conjugate face of F is defined as

F� := K∗ ∩F⊥.
Given x ∈ K, we writeF(x,K) for the intersection of all faces ofK containing x.F(x,K)

is the minimal (with respect to inclusion) face ofK containing x.
For a given x ∈ K, we write dir (x,K) for the cone of feasible directions ofK at x. This is

the set

dir (x,K) := {z ∈ E | ∃t > 0, x+ tz ∈ K}.
The closure of dir (x,K) is the tangent cone of K at x and is denoted by tan (x,K). The
tangent space ofK at x is the lineality space of tan (x,K) and is denote byTxK. In summary,
we have

tan (x,K) := cl dir (x,K),

TxK := tan (x,K) ∩ −tan (x,K).

Some of the relationships between the sets defined so far will be summarized at Lemma 2.2.
Although our focus is on semidefinite programming, most of the results will be proved

for the following primal and dual pair of general conic linear programs:

inf
x
〈c, x〉 (Conic-P)

subject to Ax = b

x ∈ K∗

sup
y
〈b, y〉 (Conic-D)

subject to c−A∗y ∈ K,

where A : E → Rm is a linear map, b ∈ Rm, c ∈ E . Semidefinite programming corre-
sponds to the specific case where E = Sn andK = Sn+.
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Wewill denote by θP and θD, the optimal values of (Conic-P) and (Conic-D) respectively.
It is understood that θP = +∞ if (Conic-P) is infeasible and θD = −∞ if (Conic-D) is
infeasible. The primal and dual feasible regions are defined as follows:

FP := {x ∈ K∗ |Ax = b},
FD := {y ∈ Rm | c−A∗y ∈ K},
FS
D := {s ∈ K | ∃y ∈ Rm, s = c−A∗y} = (c+ rangeA∗) ∩K.

If s ∈ E can be written as s = c−A∗y for some y, then s is said to be a dual slack. Fur-
thermore, if s ∈ FS

D then s is called a dual feasible slack. The dual optimal value θD is said
to be attained if there is y ∈ FD such that 〈b, y〉 = θD. The notion of primal attainment is
analogous. We recall the following basic constraint qualification.

Proposition 2.1 (Slater): Consider the pair (Conic-P) and (Conic-D).

(i) If there exists x ∈ (riK∗) ∩FP then θP = θD. If, in addition, θP is finite then θD is
attained.

(ii) If there exists s ∈ (riK) ∩FS
D then θP = θD. If, in addition, θD is finite then θP is

attained.

For the reader’s convenience, before we proceed we recall a few basic facts from convex
analysis. We provide references for the items and/or short proofs.

Lemma 2.2: LetK ⊂ E be a closed convex cone, e ∈ riK, x ∈ K and z ∈ K∗.

(i) K⊥ = lin (K∗).
(ii) x+ e ∈ riK.
(iii) There exists α > 1 such that αe+ (1− α)x ∈ K.
(iv) z ∈ K⊥ if and only if 〈e, z〉 = 0.
(v) F(x,K)� = K∗ ∩ {x}⊥.
(vi) (tan (x,K))∗ = F(x,K)�.
(vii) TxK = F(x,K)�⊥.

Proof: (i) See item (a) of Proposition 2.1 in [46].
(ii) Since e ∈ riK, for any z ∈ K we have that all points in the relative interior of the line

segment connecting z and e also belong to the relative interior ofK, see Theorem 6.1
of [43]. Since

x+ e = 1
2
e+ 1

2
(2x+ e),

we have x+ e ∈ riK.
(iii) See Theorem 6.4 in [43].
(iv) If z ∈ K⊥, then 〈e, z〉 is zero. Conversely, suppose that 〈e, z〉 is zero. By item (iii), there

is α > 1 such that

u := αe+ (1− α)x ∈ K.

On one hand, since z ∈ K∗, we have 〈u, z〉 ≥ 0.On the other, 〈u, z〉 = (1− α)〈x, z〉 ≤
0. So, we must have 〈x, z〉 = 0. As x is an arbitrary element, it holds that z ∈ K⊥.
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(v) and (vi) First, we observe that dir (x,K) coincides {α(w− x) |w ∈ K,α ≥ 0}. The lat-
ter is called the cone ofK at x in the terminology of [46] and its dual is given
byK∗ ∩ {x}⊥. With this in mind, both items follow from Proposition 3.1 and
Corollary 3.2 in [46].

(vii) Follows from (i) and (vi). �

2.1. Types of feasibility, almost optimality, almost feasibility

Here, we review the fact that a conic linear program can be in four different mutually
exclusive feasibility statuses. We say that (Conic-D) is

(i) strongly feasible if (riK) ∩ (c+ rangeA∗) �= ∅ (i.e. Slater’s condition hold),
(ii) weakly feasible if it is feasible but not strongly feasible,
(iii) weakly infeasible if it is infeasible but dist(c+ rangeA∗,K) = 0,
(iv) strongly infeasible if dist(c+ rangeA∗,K) > 0.

Strong/weak feasibility/infeasibility of (Conic-P) is defined analogously by replacing
(c+ rangeA∗) by V := {x |Ax = b}. As a matter of convention, if V = ∅, we will say
that (Conic-P) is strongly infeasible. If a problem is either weakly infeasible or weakly
feasible we will say that it is in weak status. In view of these definitions, the usual assump-
tion underlying interior point methods amounts to requiring both primal and dual strong
feasibility.

We have the following characterization of strong infeasibility, see Lemma 5 in [25].

Proposition 2.3 (Characterization of strong infeasibility): The following hold.

(i) (Conic-P) is strongly infeasible if and only if there exists y such that

〈b, y〉 = 1 and −A∗y ∈ K. (1)

(ii) (Conic-D) is strongly infeasible if and only if there exists x such that

〈c, x〉 = −1 and x ∈ K∗ ∩ kerA (2)

Moving on, let y ∈ E and ε > 0. We say that y is an ε-feasible solution to (Conic-D) if
dist (c−A∗y,K) ≤ ε. In addition, we say that y is an ε-optimal solution to (Conic-D) if
y is feasible for (SDP-D) and 〈b, y〉 ≥ θD − ε. These notions will be used in Sections 4.2
and 4.3.

In general, even if s = c−A∗y is such that dist (s,K) is small, there is no guarantee
that dist (s,FS

D) will also be small. In this case, the quantities dist (s,K) and dist (s,FS
D)

are sometimes called the backward error and forward error, respectively. The problem
of bounding the forward error by the backward error is intrinsically connected with the
notion of error bounds. See, for example, the fundamental work by Sturm [45] on error
bounds for linear matrix inequalities, where he showed the importance of facial reduction
in analysing these questions. See also [17,20] for some generalizations of Sturm’s results to
the so-called amenable cones and beyond.
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2.2. Facial structure ofSn+ and a few remarks onOint

The cone of positive semidefinite symmetricmatrices has a very special structure and every
face of Sn+ is linearly isomorphic to some Sr+ for r ≤ n. This is a well-known fact which we
state as a proposition for future reference. For a proof, see [31]. See also Section 6 of [3].
Since it will be clear from the context, in what follows we use the convention that 0 always
denotes a zero matrix of appropriate size.

Proposition 2.4: Let F be a nonempty face of Sn+. There exists r ≤ n and an orthogonal
n× n matrix Q such that

Q�FQ =
{(

U 0
0 0

)
∈ Sn

∣∣∣∣U ∈ Sr
+

}
(3)

Let F be as in Proposition 2.4, then F∗ satisfies

QF∗Q� = (Q�FQ)∗ =
{(

U V
V� W

)
∈ Sn

∣∣∣∣U ∈ Sr
+

}
. (4)

Given an arbitrary nonempty face F̂ of F∗, there is an orthogonal matrix Q̂ such that

Q̂F̂Q̂� =
⎧⎨
⎩

⎛
⎝

(
U 0
0 0

)
V

V� W

⎞
⎠ ∈ Sn

∣∣∣∣∣∣U ∈ S
q
+

⎫⎬
⎭ , (5)

where q ≤ r. Then, F̂∗ satisfies

Q̂�F̂∗Q̂ =
⎧⎨
⎩

⎛
⎝

(
U V
VT W

)
0

0 0

⎞
⎠ ∈ Sn

∣∣∣∣∣∣U ∈ S
q
+

⎫⎬
⎭ . (6)

In the definition of Oint, the affine space is contained in the space of n× n symmetric
matrices and the optimization is carried over Sn+. Note that n is the same for both Sn+ and
Sn. However, for fixedA, b, cwemight be interested in solving problems over a face of Sn+,
the dual of a face of Sn+ or even over a face of the dual of a face as in (5).

In those cases, even if (Conic-D) and (Conic-P) are both primal and dual strongly fea-
sible, it is not immediately clear how to use Oint to solve (Conic-D) and (Conic-P), since
they are not exactly standard form SDPs. One possibility would be to consider a, a priori,
stronger oracle that is also able to solve strongly feasible problems over faces of Sn+.

We will show that this is not necessary and, after some linear algebra, we can still solve
(Conic-P) and (Conic-D) usingOint. We register this fact as a proposition. Let Sr,n

+ denote
the face ofSn+ corresponding to the right-hand side of (3). LetK be a cone as in (3), (4), (5)
or (6). We see that in all those cases, we have

RKR� = Sr,n
+ ⊕ L, (7)

for some orthogonal matrix R, some r ≤ n and some linear subspace L ⊆ Sn such that
L ⊆ (Sr,n

+ )⊥. Here⊕ denotes the Minkowski sum.
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Proposition 2.5: LetK be as in (7) with some orthogonal matrix R, some r ≤ n, and some
linear subspace L ⊆ Sn such that L ⊆ (Sr,n

+ )⊥. Suppose that (Conic-P) and (Conic-D) are
strongly feasible. Then, (Conic-P) and (Conic-D) are solvable with a single call toOint.

The proof is elementary but quite cumbersome, so it is deferred to Appendix 1.

3. Facial reduction withOint

A major obstacle for solving (SDP-D) with the oracle Oint is that, in general, (SDP-D) is
not strongly feasible, i.e. Slater’s condition might not hold. By using facial reduction, we
are able to either detect infeasibility or to reformulate (SDP-D) as an SDP instance that
is strongly feasible at one side of the problem. This will be an important step towards
completely solving (SDP-D).

In this section, we discuss facial reduction for general conic linear programs and how it
can be carried out by solving auxiliary problems that are ensured to be strongly feasible at
both primal and dual sides. In particular, when the underlying coneK isSn+, this will mean
that facial reduction can be implemented through calls toOint. Although we will focus on
problems formulated in the dual form (Conic-D), any analysis carried out for (Conic-D)
can be translated back to (Conic-P). Here, we will follow the approach described in [51],
which relies on the following key result.

Lemma 3.1 (The facial reduction lemma: Lemma 3.2 in [51]): The following hold.

(i) (Conic-D) is not strongly feasible (i.e. Slater’s condition fails) if and only if there is d ∈
K∗ ∩ kerA such that:
(i) 〈c, d〉 = 0 and d �∈ K⊥, or
(ii) 〈c, d〉 < 0.

(ii) (Conic-P) is not strongly feasible (i.e. Slater’s condition fails) if and only if there are
y ∈ Rm, f ∈ K such that f = −A∗y and
(i) 〈b, y〉 = 0 and f �∈ K∗⊥ = linK (item (i) of Lemma 2.2), or
(ii) 〈b, y〉 > 0.

Therefore, whenever (Conic-D) lacks a relative interior solution (i.e. riK ∩ (c+
rangeA∗) = ∅), it is either because (Conic-D) is infeasible (alternative (ii) together with
Proposition 2.3) or because the set of dual feasible slacks FS

D is contained in K ∩ {d}⊥
(alternative (i))1. If alternative (i) holds, since d �∈ K⊥, we have

K ∩ {d}⊥ � K, (8)

that is, the face F2 := K ∩ {d}⊥ is properly contained in K. We then substitute K for F2
and repeat. As long as (riFi) ∩ (c+ rangeA∗) = ∅, we can find a new direction d.

We recall that if F is a face of K, then F � K holds if and only if dimF < dimK.
Therefore, (8) implies that after a finite number of iterations, we will either find some face
F� such that (riF�) ∩ (c+ rangeA) �= ∅ or we will eventually find out that the problem
is infeasible.
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It turns out thatF� must be the smallest faceFD
min ofKwhich containsFS

D. This process
is called facial reduction and it aims at finding FD

min. If FS
D = ∅, we have FD

min = ∅ by
convention. For the sake of preciseness, we will state the following definition.

Definition 3.2 (Reducing directions): A reducing direction for (Conic-D) is an element
d ∈ K∗ ∩ kerA such that 〈c, d〉 ≤ 0. A reducing direction for (Conic-P) is a pair (f , y) such
that f ∈ K, f = −A∗y (i.e. f ∈ rangeA∗) and 〈b, y〉 ≥ 0.

Next, {d1, . . . , d�} is said to be a sequence of reducing directions for (Conic-D) if

di ∈ (K ∩ {d1}⊥ ∩ · · · ∩ {di−1}⊥)∗ ∩ kerA ∩ {c}⊥, for i = 1, . . . , �− 1 (9)

d� ∈ (K ∩ {d1}⊥ ∩ · · · ∩ {d�−1}⊥)∗ ∩ kerA, 〈c, d�〉 ≤ 0. (10)

Analogously, {(f1, y1), . . . , (f�, y�)} is said to be a sequence of reducing directions for
(Conic-P) if

fi = −A∗yi, yi ∈ {b}⊥, fi ∈ (K∗ ∩ {f1}⊥ ∩ · · · ∩ {fi−1}⊥)∗, for i = 1, . . . , �− 1
(11)

f� = −A∗y�, 〈b, y�〉 ≥ 0, f� ∈ (K∗ ∩ {f1}⊥ ∩ · · · ∩ {f�−1}⊥)∗. (12)

Remark: Liu and Pataki introduced in [18] the notion of facial reduction cone, see
Definition 2 therein. The k-th facial reduction cone ofK is given by

FRk(K) = {(d1, . . . , dk) | d1 ∈ K∗, di ∈ (K ∩ {d1}⊥ ∩ · · · ∩ {di−1}⊥)∗, i = 2, . . . , k}.

With that, (9), (10) and (11), (12) imply that

(d1, . . . , d�) ∈ FR�(K), (f1, . . . , f�) ∈ FR�(K∗).

The minimal face FD
min containing the feasible region of (Conic-D) also has the

following well-known characterization, see for instance, Proposition 3.2.2 in [31].

Proposition 3.3 (Characterizations of theminimal face): LetF be a face ofK containing
FS
D. Suppose F and FS

D are both nonempty. Then the conditions below are equivalent.

(i) FS
D ∩ riF �= ∅.

(ii) riFS
D ⊆ riF .

(iii) F = FD
min.

The computationally challenging part of facial reduction is computing dwhich requires,
in general, solving another CLP. At first glance, it seems that we are again stuck solving
an CLP that might also not be strongly feasible. However, even if the original CLP is not
strongly feasible, searching for d can always be done by solving problems that are primal and
dual strongly feasible. In particular, whenK = Sn+, finding reducing directions can be done
withOint.
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Lemma 3.4 (Finding a reducing direction through strongly feasible auxiliary prob-
lems): Let e ∈ riK, e∗ ∈ riK∗ and consider the following pair of primal and dual problems.

inf
x,t,w

t (PK)

subject to − 〈c, x− te∗〉 + t − w = 0 (13)

〈e, x〉 + w = 1 (14)

Ax− tAe∗ = 0 (15)

(x, t,w) ∈ K∗ ×R+ ×R+

sup
y1,y2,y3

y2 (DK)

subject to cy1 − ey2 −A∗y3 ∈ K (16)

1− y1(1+ 〈c, e∗〉)+ 〈e∗,A∗y3〉 ≥ 0 (17)

y1 − y2 ≥ 0 (18)

The following properties hold.

(i) Both (PK) and (DK) are strongly feasible.

Let (x∗, t∗,w∗) be an optimal solution to (PK) and (y∗1, y
∗
2, y
∗
3) be an optimal solution

to (DK).

(ii) The primal optimal value θPK is zero if and only if FD
min � K. In this case, one of the

two alternatives below must hold:
(a) 〈c, x∗〉 < 0 and (c+ rangeA∗) ∩K = ∅ (i.e. (Conic-D) is infeasible), or
(b) 〈c, x∗〉 = 0 and (c+ rangeA∗) ∩K ⊆ K ∩ {x∗}⊥ � K.

(iii) The primal optimal value θPK is positive if and only if (Conic-D) is strongly feasible, i.e.
FD
min = K. In this case, we have

c−A∗ y
∗
3
y∗1
∈ riK.

Proof: (i) Let

t := 1
〈e, e∗〉 + 1

, w := 1
〈e, e∗〉 + 1

, x := e∗

〈e, e∗〉 + 1
.

Then (x, t,w) is a strongly feasible solution to (PK), i.e.

(x, t,w) ∈ ri (K ×R+ ×R+) = riK × riR+ × riR+.

Next, we observe that (y1, y2, y3) := (0,−1, 0) is a feasible solution to (DK) such
that (17), (18) are satisfied strictly and

cy1 − ey2 −A∗y3 = e ∈ riK.

We have thus shown that both (Conic-P) and (Conic-D) are strongly feasible.
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(ii) First, let (x∗, t∗,w∗) be an optimal solution to (Conic-P) and suppose that θPK is zero.
We have t∗ = 0. Then, (13) and (15) together with x∗ ∈ K∗ and w∗ ≥ 0 imply that

x∗ ∈ kerA ∩K∗, 〈c, x∗〉 ≤ 0. (19)

Then, we have two possibilities.
(a) Suppose 〈c, x∗〉 < 0. We will show that (Conic-D) must be infeasible. Let s ∈

(c+ rangeA∗), then (19) implies 〈s, x∗〉 < 0. Since x∗ ∈ K∗, we conclude that s
cannot belong toK, because otherwise we would have 〈x∗, s〉 ≥ 0.

Therefore, (Conic-D)must be infeasible and (c+ rangeA∗) ∩K = ∅. In this
case, we have FD

min = ∅ and, indeed, FD
min � K.

(b) Suppose 〈c, x∗〉 = 0. This, together with (19) implies that

(c+ rangeA∗) ∩K = FS
D ⊆ K ∩ {x∗}⊥.

Next, we will check that the inclusion K ∩ {x∗}⊥ � K is indeed proper. We
observe that since t∗ = 0 and 〈c, x∗〉 = 0, (13) implies that w∗ = 0 too. There-
fore, (14) implies that 〈e, x∗〉 = 1. In particular, x∗ does not belong to K⊥. In
other words,

K ∩ {x∗}⊥ � K.

Since FD
min ⊆ K ∩ {x∗}⊥, we also have FD

min � K.
Now, we will prove the converse. That is, we will suppose that FD

min � K and we
will show that θPK = 0.We start by observing that since the objective function of (PK)
is ‘t’ and t is constrained to be nonnegative, if we exhibit a feasible solution for (PK)
having t = 0 this would be enough to show that θPK = 0.

Since FD
min � K, (Conic-D) is not strongly feasible. By Lemma 3.1, there exists

some x ∈ K∗ ∩ kerA such that either (a) 〈c, x〉 = 0 and x �∈ K⊥ or (b) 〈c, x〉 < 0.
Let us check each case.
(a) Suppose 〈c, x〉 = 0 and x �∈ K⊥. Then the condition x �∈ K⊥ implies that 〈e, x〉 >

0, by item (iii) of Lemma 2.2. Then,
(

x
〈e, x〉 , 0, 0

)

is a feasible solution for (PK), which shows that θPK = 0.
(b) Suppose that 〈c, x〉 < 0. We define

α := 1
〈e, x〉 − 〈c, x〉

and this iswell-defined because−〈c, x〉 > 0 and 〈e, x〉 ≥ 0. Then (xα, 0,−α〈c, x〉)
is a feasible solution to (PK), which also shows that θPK = 0.

(iii) Since (PK) and (DK) are both strongly feasible, we have, in particular, that θPK = θDK
and there is an optimal solution to (DK) (y∗1, y

∗
2, y
∗
3) satisfying y

∗
2 = θPK . By item (ii),

we have that θPK = 0 if and only ifFD
min � K, which happens if and only if (Conic-D)

is not strongly feasible, by Proposition 3.3. As θPK is always nonnegative (because t
is constrained to be nonnegative), we conclude that (Conic-D) is strongly feasible if
and only if θPK is positive.
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Next, suppose that θPK is indeed positive. In this case we have that y∗2 = θPK is
positive and that

ey∗2 ∈ riK,

since e ∈ riK. This fact, together with (16) and item (ii) of Lemma 2.2, implies that

cy∗1 −A∗y∗3 ∈ riK.

To conclude, we observe that (18) implies that y∗1 ≥ y∗2 > 0. Therefore,

c−A∗ y
∗
3
y∗1
∈ riK

Using Proposition 3.3, we conclude that indeed FD
min = K. �

Remark: Lemma 3.4 holds for any pair of e, e∗ satisfying e ∈ riK, e∗ ∈ riK∗. WhenK =
Sn+, we may take e and e∗ to be, for example, both equal to the n× n identity matrix. IfK
is some face of Sn+, we can use Proposition 2.4 together with (3) and (4) to find e and e∗ as
follows. We take e = e∗ and let e be such thatQ�eQ = ( Ir 0

0 0
)
, where Ir is the r × r identity

matrix.
For SDPs,we note thatCheung, Schurr andWolkowicz also discuss an auxiliary problem

that is primal and dual strongly feasible, see the problem (AP) in [6]. A key difference is
that (AP) requires an additional second order cone constraint, whereas (PK) and (DK) only
use linear equalities/inequalities and cone constraints involving the original coneK and its
dual.

With the aid of Lemma 3.4, we now are able to state a facial reduction algorithm that
can be easily adapted to use the oracleOint, whenK = Sn+, see Algorithm 1.

Proposition 3.5 (Algorithm1 is correct): Algorithm 1 correctly detects whether (Conic-D)
is feasible or not. If (Conic-D) is feasible, Algorithm 1 correctly identifies the minimal face
FD
min and the pair (s, y) returned by Algorithm 1 does indeed satisfy

s = c−A∗y ∈ riFD
min.

Proof: The correctness of Algorithm 1 is a consequence of Lemma 3.4 and we will now
explain some of the details. We have several claims.
Claim 1 For all i, Fi contains (c+ rangeA∗) ∩K and Fi+1 is strictly contained in Fi

This claim holds by induction. When Algorithm 1 starts, we have F1 = K. Now, sup-
pose that for some i we have that Fi contains (c+ rangeA∗) ∩K. Given Fi, we have that
Fi+1 is constructed by the relation

Fi+1 = Fi ∩ {di}⊥.
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Algorithm 1: Facial reduction with strongly feasible auxiliary problems
Input :K,A, c
Output: Reducing directions d1, . . . , d� for (Conic-D) (Definition 3.2) together

with Feasible or Infeasible. If Feasible, a pair (s, y) is also
returned so that

s = c−A∗y ∈ ri (K ∩ {d1}⊥ ∩ · · · ∩ {d�}⊥).

1 F1← K, i← 1.
2 ReplaceK,K∗ by Fi,F∗i in (DK) and (PK), respectively, and solve the resulting

pair of problems (associated with the conesFi,F∗i ). Denote the obtained optimal
solutions by (x∗, t∗,w∗) and (y∗1, y

∗
2, y
∗
3).

3 if t∗ = 0 then
4 di← x∗ /∗ Found a reducing direction ∗/
5 if 〈c, x∗〉 < 0 then
6 FD

min← ∅ /∗ 〈c, x∗〉 < 0 attests that (Conic-D) is infeasible ∗/
7 return Infeasible, FD

min, d1, . . . , di
8 else
9 Fi+1← Fi ∩ {di}⊥ /∗ In this case we have 〈c, x∗〉 = 0 ∗/
10 i← i+ 1
11 go to line 2
12 end
13 else
14 FD

min← Fi, /∗ Found the minimal face ∗/
15 s← c−A∗ y∗3y∗1 /∗ s ∈ riFi

∗/

16 return Feasible, FD
min, d1, . . . , di,

(
s, y
∗
3
y∗1

)
17 end

However, Fi+1 is only computed if the optimal value of (PK) is 0 and 〈c, x∗〉 = 0, see
Lines 5 and 9. In this case, item (ii)(b) of Lemma 3.4 ensures

(c+ rangeA∗) ∩Fi ⊆ Fi+1 � Fi. (20)

Since Fi is a face (and, therefore, a subset) of K, the hypothesis that Fi contains (c+
rangeA∗) ∩K implies that, in fact,

(c+ rangeA∗) ∩Fi = (c+ rangeA∗) ∩K,

which, combined with (20), implies thatFi+1 must also contain (c+ rangeA∗) ∩K. This
concludes the proof of Claim 1.
Claim 2 The minimal face ofFi containing (c+ rangeA∗) ∩K coincides with FD

min

Claim 2 follows from Claim 1 and the fact that if F is a face of K and F̂ is a face of F ,
then F̂ is a face ofK.
Claim 3 For all i, (c+ rangeA∗) ∩Fi = ∅ holds if and only if (Conic-D) is infeasible
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Claim 3 is a consequence of Claim 1.
Now, Claim 1 implies that whenever a new face Fi+1 is computed, it must be strictly

smaller thanFi and, therefore, the dimension must also be strictly smaller2. Since we can-
not have an infinite strictly descending of faces, at some point, the optimal value of (PK)
must become positive or a certificate that (c+ rangeA∗) ∩Fi = ∅ will be found (see
Lines 5 and 6). In the first case, Claim 2 together with item (iii) of Lemma 3.4 (applied
to Fi) implies that FD

min = Fi and that

s = c−A∗y ∈ riFD
min,

where y = y∗3/y
∗
1. In the second case, Claim 3 and item (ii)(a) of Lemma 3.4 ensures that,

indeed, (Conic-D) must be infeasible. �

Next, we examine the computational cost of Algorithm 1, following an analysis similar
to other facial reduction approaches (e.g. [35,51]). When Algorithm 1 is invoked, a chain
of faces ofK is constructed as follows

K = F1 � · · · � F�.

We recall that ifF , F̂ are faces ofK such thatF ⊆ F̂ , thenF �= F̂ if and only if dimF <

dim F̂ . AsK is finite dimensional, we conclude that at most dimK + 1 faces will be found
when Algorithm 1 is invoked. This estimate can be sharpened in several different ways. For
example, let �K denote the longest chain of strictly decreasing nonempty faces of K. Then,
the number of nonempty faces that will be found when Algorithm 1 is invoked is bounded
above by �K. In particular, whenK = Sn+, we have

dimK = n(n+ 1)
2

, �Sn+ = n+ 1.

This shows that, in some cases, �K can be amuch better bound than dimK. For a proof that
�Sn+ = n+ 1 see, for example, Theorem 14 in [12] where it is shown that wheneverK is a
symmetric cone (homogeneous self-dual cone), we have �K = rankK + 1, where rankK
is the Jordan algebraic rank ofK. We summarize this discussion in the next proposition.

Proposition 3.6 (Computational cost of Algorithm 1): The number of times that
Algorithm 1 solves the pair (PK) and (DK) is bounded above by �K. In particular, when
K = Sn+, Algorithm 1 can be implemented by invokingOint at most n+ 1 times.

Proof: In the proof of Proposition 3.5, we have shown thatAlgorithm1 constructs a strictly
nondecreasing chain of faces as follows

K = F1 � · · · � F�. (21)

We divide the proof in two cases. Suppose first that (Conic-D) is feasible. Then,F� = FD
min

by Proposition 3.5 and FD
min is not empty. Finding a new face Fi in Algorithm 1 corre-

sponds to solving the pair (PK) and (DK) once. So, after solving the pair (PK) and (DK) at
most �K − 1 times, Algorithm 1 will set F� to FD

min. Then, (PK) and (DK) will be solved
one extra time in order to check thatF� is indeed the minimal face and to obtain s ∈ riK,
as in Lines 14 and 15. In total, (PK) and (DK) is solved at most �K times.



442 B. F. LOURENÇO ET AL.

Next, suppose that (Conic-D) is infeasible. In this case, the last face F� will be empty
(see Line 6), but all faces up to �− 1 will be nonempty. Therefore, �− 1 ≤ �K. As in the
previous case, each face in the chain (21) corresponds to solving the pair (PK) and (DK)
once. In summary, after solving (PK) and (DK) at most �K − 1 times, Algorithm 1will find
the last nonempty face F�−1 and, then, (PK) and (DK) will be solved once more in order
to set F� to ‘∅’.

To conclude, we suppose thatK = Sn+. Then, Algorithm 1 successively solves the prob-
lem (PK) and (DK) over Sn+ and its faces at most �Sn+ = n+ 1 times. By Lemma 3.4 and
Proposition 2.5, these are strongly feasible problems that can be solved by invokingOint a
single time. �

We mention in passing that the minimal number of facial reduction steps needed to
find the minimal face of (Conic-D) is often called the singularity degree of (Conic-D). The
singularity degree is also bounded by �K, but sharper estimates can be obtained by consid-
ering facial reduction strategies that take into account the existence of polyhedral faces of
K as in the case of the FRA-Poly algorithm in [23].

To conclude this section, we quickly review some variants of facial reduction. The search
for efficient ways of doing facial reduction and computing the reducing directions is an area
of active research. Permenter, Friberg and Andersen have recently shown that reducing
directions can be obtained naturally if we have access to relative interior solutions to a
certain self-dual homogeneous model of (Conic-P) and (Conic-D), see Theorem 3.2 and
Section 4 of [36].

It is also possible to relax the search criteria in order to make the problem of finding
d more tractable by considering, for example, polyhedral approximations as in the Par-
tial Facial Reduction approach of Permenter and Parrilo [37] or relaxing the definition of
reducing direction as in the approach by Friberg [8] by removing the conic constraints.
See also the work of Zhu, Pataki and Tran-Dinh for a heuristic facial reduction algorithm
for SDPs in primal standard format [27]. In the case of [37] and [27], the drawback is that
facial reduction might end with a face other than FD

min, although their experiments show
that many interesting instances become easier to solve nonetheless. For the approach in
[8], there are some representability issues affecting the cones obtained by intersecting K
with the hyperplanes defined by the reducing directions, see Sections 4 and 6 therein. In
[23], we proposed ‘FRA-Poly’, a two-phase facial reduction algorithm that takes into con-
sideration the presence of polyhedral faces in the face lattice of K. Instead of performing
facial reduction until Slater’s condition is satisfied, Phase 1 of the algorithm in [23] regular-
izes the problem until the so-called partial polyhedral Slater’s condition is satisfied. Then,
in Phase 2, the algorithm jumps directly to the minimal face. An extension of Lemma 3.4
appropriate for FRA-Poly is proved in Lemma 3 of [23].

4. Double facial reduction

In Section 3, we saw how to perform facial reduction by solving auxiliary problems that
are always primal and dual strongly feasible. However, as we remarked previously, facial
reduction only guarantees that one side of the problemwill be strongly feasible, after refor-
mulating the problem over the minimal face. In order to finally obtain a problem where
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both the primal and dual are strongly feasible, we only need to do facial reduction twice,
which is mildly surprising. We call this double facial reduction.

In this section, we discuss technical aspects related to double facial reduction and how
it can be used to compute the optimal value of (Conic-D). Double facial reduction will
also enable us to compute almost optimal solutions when the optimal value of (Conic-D)
is not attained, as we will see in Section 4.2.Wewill also show how to obtain almost feasible
solutions when (Conic-D) is weakly infeasible, see Section 4.3.

4.1. Computing the optimal value of (Conic-D)

The first step towards computing the optimal value θD of (Conic-D) is to apply facial
reduction to (Conic-D). Then, if (Conic-D) is feasible, we obtain the following pair ofCLPs:

[Primal-dual pair obtained after applying facial reduction to (Conic-D)]

inf
x
〈c, x〉 (P̂)

subject to Ax = b

x ∈ (FD
min)
∗

sup
y
〈b, y〉 (D̂)

subject to c−A∗y ∈ FD
min.

Here, (D̂) is strongly feasible, but it could still be the case that (P̂) is not strongly feasible.
Therefore, when K = Sn+, the pair (P̂) and (D̂) might still not be solvable with Oint. To
remedy this issue, ifFD

min �= ∅, it is reasonable to consider applying facial reduction to (P̂),
which leads to the following pair of problems.

[Primal-dual pair obtained after applying facial reduction to (P̂)]

inf
x
〈c, x〉 (P∗)

subject to Ax = b

x ∈ F P̂
min

sup
y
〈b, y〉 (D∗)

subject to c−A∗y ∈ (F P̂
min)
∗.

Here, F P̂
min is the minimal face of (FD

min)
∗ which contains the feasible region of (P̂).

Now, ifFD
min andF P̂

min are nonempty, both (P∗) and (D̂) are ensured to be strongly feasible.
However, it is not obvious at all whether (D∗) still satisfies strong feasibility, since FD

min ⊆
(F P̂

min)
∗. After all, C1 ⊆ C2 does not imply riC1 ⊆ riC2 in general.

Nevertheless, we will show in this section that, in fact, if (Conic-D) and (Conic-P) are
both feasible, then (D∗) will still be strongly feasible. In addition, if F P̂

min is empty, then it
is because θD = +∞.

In essence, the question boils down to understanding the possible ways that the feasibil-
ity properties of (Conic-D) might change when a single facial reduction step is performed
at (Conic-P) andK is replaced by (K∗ ∩ {f }⊥)∗ in (Conic-D), for some f ∈ K ∩ rangeA∗.
First, we need a few auxiliary results.

Lemma 4.1: Let u ∈ riK, d ∈ K and v ∈ TdK, where TdK is the tangent space of K at d.
Then, there is t>0 such that

u+ v+ td ∈ riK.
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The intuition for Lemma 4.1 is as follows. If v+ td were a point in K, then it would
be clear that u+ v+ td ∈ riK, by item (ii) of Lemma 2.2. Unfortunately, this does not
happen in general. However, as t increases, v+ td gets closer and closer toK, so adding u
will eventually drag everything to the relative interior.

Proof: Let

C = {u+ v+ td | t ≥ 0}.
To prove the lemma, it is enough to show that riC ∩ riK �= ∅. Suppose, for the sake
of obtaining a contradiction, that riC ∩ riK = ∅. This implies that there is a separating
hyperplane

H = {w ∈ E | 〈z,w〉 = θ},
such that H properly separates C and K, see Theorem 11.3 in [43]. We recall that proper
separationmeans that C andK lie in opposite closed half-spaces defined by H and H does
not contain both sets at the same time. Without loss of generality, wemay assume thatC and
K lie in the ‘lower’ and ‘upper’ closed half-spaces defined byH, respectively. Therefore, we
have

〈u, z〉 + 〈v, z〉 + 〈td, z〉 ≤ θ ≤ 〈w, z〉, ∀ t ≥ 0, ∀ w ∈ K. (22)

For (22) to hold, we must have z ∈ K∗ and θ ≤ 0 (since 0 ∈ K). Furthermore, because
d ∈ K (by assumption) and z ∈ K∗, we have 〈d, z〉 ≥ 0. However, in view of (22), it must
be the case that

〈d, z〉 = 0, (23)

since t can be taken to be any nonnegative number. By item (v) of Lemma 2.2, we conclude
that z ∈ F(d,K)�.

From item (vii) of Lemma 2.2, we have TdK = F(d,K)�⊥. Therefore,

〈v, z〉 = 0. (24)

From (22), (23), (24) and recalling that θ ≤ 0, we obtain 〈u, z〉 = 0. This implies that
C ⊆ H and θ = 0. By item (iv) of Lemma 2.2, we have K ⊆ H as well, since u ∈ riK by
assumption. This contradicts the properness of the separation. �

Weare now ready to state a result on the conservation of feasibility after one facial reduc-
tion step. For what follows, we recall that (Conic-D) is in weak status if it is weakly feasible
or weakly infeasible. We also recall the following basic facts. A faceF ofK always satisfies
F = K ∩ spanF , therefore we have

F∗ = cl (K∗ +F⊥). (25)

Also, if C1 and C2 are two convex sets we have ri (C1 + C2) = riC1 + riC2, ri (clC1) =
riC1.
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Proposition 4.2 (Conservation of feasibility): Let f ∈ K ∩ rangeA∗ and let F := K∗ ∩
{f }⊥ = F(f ,K)� (see item (v) of Lemma 2.2). Let (D’) be the problem obtained by replacing
K by F∗ in (Conic-D), i.e.

sup
y
〈b, y〉 (D’)

subject to c−A∗y ∈ F∗.
We have the following relations:

(i) (Conic-D) is strongly feasible if and only if (D’) is;
(ii) (Conic-D) is strongly infeasible if and only if (D’) is;
(iii) (Conic-D) is in weak status if and only if (D’) is.

Proof: (i) First, since F∗ = cl (K +F⊥) and riF⊥ = F⊥, we have
riF∗ = ri (cl (K +F⊥)) = (riK)+F⊥. (26)

Now, suppose that (Conic-D) is strongly feasible. Since riK ⊆ riK +F⊥, we con-
clude that (D’) must be strongly feasible as well.

Conversely, suppose that (D’) is strongly feasible and let s = c−A∗y be such that
s ∈ riF∗. By (26), we have

s = u+ v,

where u ∈ riK and v ∈ F⊥. By items (v) and (vii) of Lemma 2.2, we have

F⊥ = F(f ,K)�⊥ = TfK.

Invoking Lemma 4.1 we conclude that there exists t>0 such that

u+ v+ tf ∈ riK.

Since f ∈ rangeA∗, there exists ŷ such that f = −A∗ŷ. We conclude that

s+ tf = u+ v+ tf = c−A∗(y+ ŷ) ∈ riK,

thus showing that (Conic-D) is strongly feasible.
(ii) SinceK ⊆ F∗, if (D’) is strongly infeasible, (Conic-D) must be strongly infeasible as

well.
Conversely, suppose that (Conic-D) is strongly infeasible. Then, Proposition 2.3

implies the existence of x satisfying

〈c, x〉 = −1, x ∈ K∗ ∩ kerA.

Since x ∈ kerA and f ∈ rangeA∗, we have 〈x, f 〉 = 0. So, in fact, x ∈ F . Therefore,
by Proposition 2.3, the same x attests that (D’) is strongly infeasible.

(iii) First, we recall that the four feasibility statuses described in Section 2.1 are mutually
exclusive. Next, suppose that (Conic-D) is in weak status, i.e. it is either weakly fea-
sible or weakly infeasible. By items (i) and (ii) proved so far, (D’) cannot be strongly
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infeasible nor strongly feasible because thatwould imply that (Conic-D) has that same
feasibility status. Therefore, (D’) must be in weak status as well.

Conversely, suppose that (D’) is in weak status. Again, items (i) and (ii) imply that
the only two possibilities for (Conic-D) are weak infeasibility or weak feasibility. �

We can now state and prove our main result on the preservation of feasibility status
after facial reduction is performed on (Conic-P). Intuitively, Theorem 4.1 means the fol-
lowing. Whenever facial reduction is applied to, say, (Conic-P), we obtain a new problem
which is ensured to be strongly feasible, if (Conic-P) is feasible. This new problem will
also have a dual problem whose feasibility properties might be different than the orig-
inal dual problem (Conic-D). However, Theorem 4.1 says that no drastic changes are
allowed, i.e. if (Conic-D) was strongly feasible to begin with, it will stay strongly feasi-
ble. The only possible room for change is that a weakly feasible/infeasible problem might
become weakly infeasible/feasible. Theorem 4.1 also contains the relatively surprising fact
that strong feasibility of the new dual implies strong feasibility of (Conic-D).

Theorem 4.1 (Preservation of feasibility under facial reduction): Let FP
min denote the

minimal face ofK∗ that contains the feasible region of (Conic-P) and suppose thatFP
min �= ∅.

Consider the problem obtained by replacingK by (FP
min)
∗ in (Conic-D), i.e.

sup
y
〈b, y〉 (Conic-D-FP)

subject to c−A∗y ∈ (FP
min)
∗,

The following hold.

(i) (Conic-D) is strongly feasible if and only if (Conic-D-FP) is strongly feasible;
(ii) (Conic-D) is strongly infeasible if and only if (Conic-D-FP) is strongly infeasible;
(iii) (Conic-D) is in weak status if and only if (Conic-D-FP) is in weak status.

Proof: Applying facial reduction to (Conic-P) (e.g. Algorithm 1), we see thatFP
min can be

written as

FP
min = K∗ ∩ {f1}⊥ ∩ · · · ∩ {f�}⊥,

where each fi satisfies

fi ∈
(
K∗ ∩ {f1}⊥ ∩ · · · {fi−1}⊥

)∗ ∩ rangeA∗.
Now, denote by (Di) the problem obtained by replacing K by (K∗ ∩ {f1}⊥ ∩ · · · {fi−1}⊥)∗
in (Conic-D). We observe the following:

(1) (D1) and (D�+1) are precisely (Conic-D) and (Conic-D-FP), respectively.
(2) fi is a reducing direction for (Di), so Proposition 4.2 applies to fi, (Di) and (Di+1), for

i = 1, . . . , �.

By induction, we conclude that items (i), (ii) and (iii) hold. �
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We are now in position to state our main result on double facial reduction.

Theorem 4.2 (Double facial reduction): SupposeFD
min �= ∅ and consider the problems (P̂)

and (D̂) above.
LetF P̂

min be the minimal face of (FD
min)
∗ that contains the feasible region of (P̂). Consider

the pair of problems (P∗) and (D∗), which we repeat below for convenience.

inf
x
〈c, x〉 (P∗)

subject to Ax = b

x ∈ F P̂
min

sup
y
〈b, y〉 (D∗)

subject to c−A∗y ∈ (F P̂
min)
∗.

The following hold.

(i) The optimal value of (Conic-D) (θD) is finite if and only if F P̂
min �= ∅. In this case, (P∗)

and (D∗) are both strongly feasible and

θD = θP∗ = θD∗ .

(ii) θD = +∞ if and only if F P̂
min = ∅.

Proof: (i) Suppose that the optimal value of (Conic-D) is finite. Then, by Proposition 2.1,
the optimal value of (P̂) must be equal to θD, since (D̂) is strongly feasible. In partic-
ular, (P̂) must be feasible and, therefore, F P̂

min �= ∅. Since F P̂
min is the minimal face of

(FD
min)
∗ that contains the feasible region of (P̂), (P∗) is strongly feasible and its optimal

value must coincide with the optimal value of (P̂), which is θD.
Next, since (P∗) is strongly feasible and has finite optimal value, (D∗) must have the

same optimal value. Therefore, as stated, we have

θD = θP∗ = θD∗ .

By item (i) of Theorem 4.1, substituting FD
min by (F P̂

min)
∗ preserves strong feasibility,

so (P∗) and (D∗) are both strongly feasible.
Conversely, suppose thatF P̂

min �= ∅. This means that (P∗) is feasible. So (P̂) must be
feasible as well, because any feasible solution to (P∗) must be a feasible solution to (P̂).
Since we are assuming that FD

min �= ∅, (D̂) must be feasible as well. Therefore, (P̂)
and (D̂) are feasible primal and dual problems sharing the same optimal value, which
must be finite. Since (D̂) shares the same optimal value with (Conic-D), we conclude
that θD is indeed finite.

(ii) It follows from item (i). �

The conclusion is that, when θD is finite, the pair of problems (P∗) and (D∗) are
both strongly feasible. When K = Sn+, they can indeed be solved by Oint in order to
obtain θD by Proposition 2.5. At this stage, even though θD might have been unattained
for (Conic-D), (D∗) is never hindered by unattainment.

The problem, however, is that a feasible solution to (D∗) might not be feasible
to (Conic-D). And, indeed, if θD is finite but not attained, even though (D∗) has an optimal
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solution, (Conic-D) will not have optimal solutions. When θD is finite but not attained,
the best we can do is to compute some solution yε satisfying 〈b, yε〉 ≥ θD − ε, for some
arbitrary ε > 0. We will discuss this issue in the next subsection.

Before we move on, we give an intuitive explanation of why unattainment disappears
when doing facial reduction. The ‘dual’ explanation is that strong feasibility is satisfied
at (P∗) (which is the Lagrangian dual of (D∗)), so, of course, (D∗) must be attained when
θD value is finite.

We now give an ‘primal’ explanation of why unattainment disappears. Suppose that the
optimal value θD of (Conic-D) is finite but not attained. Then, there exists a sequence {yk}
such that 〈b, yk〉 → θD and

sk := c−A∗yk ∈ K, ∀ k.
As we are assuming unattainment and FS

D is closed, {yk} cannot be bounded. Passing
to a subsequence if necessary, we may assume that ‖yk‖ → ∞ and yk/‖yk‖ converges
to some y ∈ Rm and that θD ≥ 〈b, yk〉 ≥ θD − 1 for every k. Dividing c−A∗yk ∈ K and
θD ≥ 〈b, yk〉 ≥ θD − 1 by ‖yk‖ and taking limits, we conclude that f := −A∗y satisfies

f ∈ K, f ∈ rangeA∗, 〈b, y〉 = 0

and y must be nonzero. This shows that (f , y) is a reducing direction for (Conic-P), see
Definition 3.2. In fact, with more effort, we can show that there must be at least one pair
(f , y) as above satisfying f �∈ linK, see Lemma 3.1. In other words, a necessary condition
for unnatainment of (Conic-D) is the existence of (f , y) as above with f �∈ linK. Informally
speaking, (f , y) acts as a ‘recession direction’ for the problem (Conic-D). This suggests
that one possible way of fixing unattainment is by preventing f from becoming a reces-
sion direction. This is accomplished, for instance, by substituting K by cl (K + span {f }),
so that f ∈ lin (cl (K + span {f })). However, cl (K + span {f }) is equal to (K∗ ∩ {f }⊥)∗,
which corresponds to a single facial reduction step done at (Conic-P).

In other words, from the point of view of (Conic-D), facial reduction done at (Conic-P)
removes recession directions that affect attainment. We remark that Abrams [1] also
proposed a regularization procedure that removes recession directions, in order to fix
unattainment in convex programming.

4.2. Obtaining feasible almost optimal solutions

The pair of problems (D∗) and (P∗) are strongly feasible and their common optimal value
is θD. However, an optimal solution to (D∗) is unlikely to be feasible for (Conic-D). In fact,
it may happen that θD is not attained, in which case (Conic-D) has no optimal solution at
all.

Nevertheless, we will show how to construct feasible solutions that are almost optimal
for (Conic-D) using the directions obtained when calling Algorithm 1 with (P̂) as input,
see Algorithm 2.

Note that the inner loop in Algorithm 2 goes from �2 to 1. This is because we start from
a relative interior solution to F�2+1 and we have to work our way until the bottom of the
chain FD

min. The tricky part is ensuring that at each step there is indeed an αi as in Line 9.
If there is at least one αi, then any number larger than αi will work. Therefore, it is enough
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Algorithm 2: Finding an ε-optimal solution to (Conic-D)
Input:
(1) Reducing directions for (P̂) (Definition 3.2): (f1, y1), . . . , (f�2 , y�2).
(2) ŷ such that c−A∗ŷ ∈ riFD

min,
(3) an optimal solution y∗ to (D∗).
(4) ε > 0

Output: A feasible solution yε to (Conic-D) satisfying 〈b, yε〉 ≥ θD − ε.
1 if 〈b, ŷ〉 ≥ θD − ε then
2 return ŷ
3 else
4 β ← θD−〈b,ŷ〉−ε

θD−〈b,ŷ〉
5 w�2+1← βy∗ + (1− β)ŷ
6 F�2+1← (FD

min)
∗ ∩ {f1}⊥ ∩ · · · ∩ {f�2}⊥

7 for i = �2 to 1 do
8 Fi← (FD

min)
∗ ∩ {f1}⊥ ∩ · · · ∩ {fi−1}⊥

9 Find αi positive such that
c−A∗(wi+1 + αiyi) = c−A∗wi+1 + αifi ∈ riF∗i

10 wi← wi+1 + αiyi
11 end
12 return w1
13 end

to keep trying larger and larger numbers until the condition in Line 9 is met. We will now
show that an appropriate αi always exists and that Algorithm 2 is indeed correct. For that,
we need a few auxiliary results. First, suppose that f ∈ F∗, forF a closed convex cone. We
have by items (v) and (vii) of Lemma 2.2 and (25) that

(F ∩ {f }⊥)∗ = (F(f ,F∗)�)∗ = cl (F∗ +F(f ,F∗)�⊥) = cl (F∗ + TfF∗). (27)

Lemma 4.3: Suppose that s ∈ (c+ rangeA∗) ∩ riK and let FP
min be the minimal face of

K∗ that contains the feasible region of (Conic-P). If FP
min �= ∅, then s ∈ ri ((FP

min)
∗).

Proof: It is a consequence of the proof of Theorem 4.1. Nevertheless, we will work out the
details here. As in the proof of Theorem 4.1, applying facial reduction to (Conic-P) (e.g.
Algorithm 1), we see that FP

min can be written as

FP
min = K∗ ∩ {f1}⊥ ∩ · · · ∩ {f�}⊥,

where each fi satisfies

fi ∈
(
K∗ ∩ {f1}⊥ ∩ · · · {fi−1}⊥

)∗ ∩ rangeA∗.
Now, let Fi := (K∗ ∩ {f1}⊥ ∩ · · · ∩ {fi−1}⊥). We observe the following:
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(1) F1 = K∗ and F�+1 = FP
min,

(2) Fi← Fi−1 ∩ {fi−1}⊥, for all i>1.

By hypothesis, we have s ∈ riF∗1 and by (27) we have

F∗2 = cl (F∗1 + Tf1F∗1 )

riF∗2 = (riF∗1 )+ Tf1F∗1 .

Therefore, s ∈ riF∗2 as well. At the i-th step, we have:

F∗i = cl (F∗i−1 + Tfi−1F∗i−1)
riF∗i = (riF∗i−1)+ Tfi−1F∗i−1.

By induction, we conclude that s ∈ riF∗i for every i. In particular, s ∈ ri ((F�+1)∗) =
ri ((FP

min)
∗). �

Theorem 4.3: Algorithm 2 is correct, that is, the output yε is indeed a feasible solution to
(Conic-D) satisfying 〈b, yε〉 ≥ θD − ε.

Proof: yε is ε-optimal. By construction, 〈b,w�2+1〉 ≥ θD − ε. Moreover, all the yi satisfy
〈b, yi〉 = 0. Therefore, 〈b, yε〉 ≥ θD − ε.

yε is feasible for (Conic-D). If the algorithm stops before Line 5, yε is feasible because
FD
min ⊆ K. So suppose that we have reached Line 5. SinceF∗1 = FD

min, if Line 9 is correct,
then yε is feasible for (Conic-D). We now show that Line 9 is indeed correct.

Let

ŝ := c−A∗ŷ,
si := c−A∗wi, for i = 1, . . . , �2 + 1.

We have ŝ ∈ riFD
min and, by Lemma 4.3, ŝ ∈ ri ((F P̂

min)
∗) as well. Note that s�2+1 is a strict

convex combination of c−A∗y∗ and ŝ, see Line 5. These points belong to (F P̂
min)
∗ and

ri ((F P̂
min)
∗), respectively, so s�2+1 must belong to ri ((F P̂

min)
∗) as well. In addition, s�2+1 is

a feasible slack for (D∗).
Now suppose that we have shown that si+1 ∈ riF∗i+1, for some i. By (27), we have

F∗i+1 = (Fi ∩ {fi}⊥)∗ = cl (F∗i + TfiF∗i )

riF∗i+1 = (riF∗i )+ TfiF∗i .

Therefore, si+1 = ui + vi for some ui ∈ riF∗i and vi ∈ TfiF∗i . We can apply Lemma 4.1 to
ui, vi, fi,F∗i and conclude the existence of positive αi such that si+1 + αfi belongs to riF∗i .
Therefore,

c−A∗(wi+1 + αyi) ∈ riF∗i .
In other words, si = c−A∗wi ∈ riF∗i .
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By induction, we conclude that at each iteration it is possible to find αi as stated in
Line 9. �

4.2.1. Computational aspects of Algorithm 2
Having proved the correctness of Algorithm 2 in Theorem 4.3, we discuss the computation
of αi in Line 9, which is the most computationally expensive part of the algorithm. As
remarked previously, the existence of αi follows from Lemma 4.1. So, we will discuss the
computation of t as in Lemma 4.1.

Let u, v, d be as in Lemma 4.1, i.e. u ∈ riK, d ∈ K and v ∈ TdK. As we remarked before
Lemma 4.3, if t > 0 is such that u+ v+ td ∈ riK, then any t̂ ≥ t will also work. So, the
simplest algorithm for computing t starts with some arbitrary positive value and keeps
doubling it, until u+ v+ td ∈ riK. Whether this is computationally reasonable or not
depends on how hard it is to decide membership in K and riK. If K = Sn+ or K is as in
Proposition 2.5, the membership problem is not too expensive in contrast to the situation
whereK is, say, a completely positive cone.

We also recall that given s ∈ Sn, its minimum eigenvalue λmin(s) satisfies

λmin(s) = sup {t | s− tIn ∈ Sn
+} = sup {−t | s+ tIn ∈ Sn

+},

where In is the n× n identitymatrix. Accordingly, the line search problem of finding t with
u+ v+ td ∈ riK seems quite akin to a minimum eigenvalue computation. In the context
of semidefinite programming, although one could useOint to solve the membership prob-
lem, it seems more reasonable to solve it directly via minimum eigenvalue computations
and/or factorizations.

Nevertheless, for the sake of completeness, we show that for arbitraryK, we can obtain
t by solving a pair of primal and dual strongly feasible problems. First, we consider the
following pair of problems:

inf
x
〈u+ v, x〉 (Pd)

subject to 〈d, x〉 = 1

x ∈ K∗

sup
t
− t (Dd)

subject to u+ v+ td ∈ K.

Lemma 4.1 guarantees that (Dd) is strongly feasible, so we can apply Lemma 3.4 to the
pair (Pd) and (Dd) by replacing b, c by −1 and u+ v respectively andA∗ by the map that
takes t to −td. From item (iii) of Lemma 3.4, if we solve the pair (PK) and (DK) we will
obtain t such that u+ v+ td ∈ riK. If t turns out to be negative, we can just set it to zero.

Moving on, we also notice the following curious feature of Algorithm 2. Except for the
problem of finding αi in Line 9, the complexity of Algorithm 2 does not depend on ε.
Decreasing ε, however, might lead to larger αi in Algorithm 2.

Finally, we compare Algorithm 2 to an elementary method for computing an ε-optimal
solution. Namely, once θD is known and given some fixed ε > 0, the naive approach is to
directly apply a feasibility algorithm to the problem of finding a point in the set

{y ∈ Rm | c−A∗y ∈ FD
min, 〈b, y〉 ≥ θD − ε}. (28)
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The set in (28) can be expressed as the feasible set of a conic linear program over FD
min ×

R+:

sup
y

0 (Naive)

subject to c−A∗y ∈ FD
min,

ε − θD + 〈b, y〉 ∈ R+.

Since (D̂) is strongly feasible, there is yε such that c−A∗yε ∈ riFD
min and 〈b, yε〉 > θD − ε,

thus showing that (Naive) is strongly feasible3. Then, if we solve the auxiliary prob-
lems (PK), (DK) in Lemma3.4 associated to (Naive), we obtain a feasible solution to (Naive)
by item (iii) of Lemma 3.4. A feasible solution to (Naive) is precisely an ε-optimal solution
to (Conic-D).

The drawback of this naive approach is that for every ε we need to, at the very least, solve
one extra conic linear program. However, the approach using Algorithm 2 only requires
solving conemembership problems whichmight be significantly cheaper depending onK.

4.3. Distinguishing betweenweak and strong infeasibility

When (Conic-D) is infeasible, it can be either strongly or weakly infeasible. Strong infeasi-
bility is relatively straightforward to analyse. Indeed, by Proposition 2.3, if we wish to show
that (Conic-D) is strongly infeasible, it is enough to exhibit some x ∈ K ∩ kerA such that
〈c, x〉 = −1. Therefore, in order to prove that (Conic-D) is strongly infeasible we need to
solve an CLP feasibility problem. In particular, whenK = Sn+, this can be done in at most
n+ 1 calls toOint, by Proposition 3.6.

When (Conic-D) is weakly infeasible, the situation is far more complicated. In order
to prove that (Conic-D) is weakly infeasible, we have to prove that (Conic-D) is infeasible
(which can also be done by Algorithm 1) and that the feasibility problem associated to
strong infeasibility is infeasible, i.e. we have to show that there is no solution to

find x ∈ K∗ ∩ {x ∈ kerA | 〈c, x〉 = −1}.

In this subsection, we will use the techniques of Section 4.2 to analyse weak infeasibility.
This is not surprising because weak infeasibility and non-attainment of optimal solutions
are closely related as wewill see in amoment. In fact, let e ∈ riK and consider the following
problem and its primal counterpart.

inf
x
〈c, x〉 (P-Feas)

subject to Ax = 0

〈e, x〉 = 1

x ∈ K∗

sup
t,y

t (D-Feas)

subject to c− te−A∗y ∈ K.

Before we proceed, we need two preliminary results.
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Proposition 4.4: If (c+ rangeA∗) ∩ spanK �= ∅, then (D-Feas) is strongly feasible. If (c+
rangeA∗) ∩ spanK = ∅, then (Conic-D) is strongly infeasible.

Proof: Suppose that (c+ rangeA∗) ∩ spanK �= ∅ and let y and s be such that

s = c−A∗y ∈ (c+ rangeA∗) ∩ spanK.

Then, since e ∈ riK, there exists α > 0 such that e+ αs ∈ riK. Since K is a cone, we
have e/α + s ∈ riK. Therefore, (t, y) := (−α, y) is a solution for (D-Feas) for which the
corresponding slack c− te−A∗y belongs to riK, thus showing that (D-Feas) is strongly
feasible.

Next, suppose that (c+ rangeA∗) ∩ spanK = ∅. Because c+ rangeA∗ and spanK are
polyhedral sets, this implies that

dist (c+ rangeA∗, spanK) > 0,

e.g. see Corollary 19.3.3 and Theorem 11.4 in [43]. In particular, we must have dist (c+
rangeA∗,K) > 0 as well, thus showing that (Conic-D) is strongly infeasible. �

Lemma 4.5: Suppose dist (c+ rangeA∗,K) = 0. Then, (c+ rangeA∗) ∩ spanK �= ∅
and

dist ((c+ rangeA∗) ∩ spanK,K) = 0.

Proof: For simplicity of notation, let L := rangeA∗. Since dist (L+ c,K) = 0, we also
have dist (L+ c, spanK) = 0. However, because L+ c and spanK are polyhedral sets,
this implies that (L+ c) ∩ spanK �= ∅, see Corollary 19.3.3 and Theorem 11.4 in [43]. So,
let ĉ ∈ (L+ c) ∩ spanK. We have

(L+ c) ∩ spanK = (L ∩ spanK)+ ĉ.

For the sake of obtaining a contradiction, assume that dist ((L+ c) ∩ spanK,K) > 0. By
item (ii) of Proposition 2.3, there exists x such that

〈ĉ, x〉 = −1, x ∈ K∗ ∩ ((L ∩ spanK)⊥).

Therefore, x satisfies x = u+ v, where u ∈ L⊥ and v ∈ K⊥. Recall that, since ĉ ∈ L+ c,
there exists l ∈ L such that ĉ = l+ c. We have

−1 = 〈ĉ, x〉 = 〈l+ c, u+ v〉 = 〈c, u〉,

because l+ c ∈ spanK, v ∈ K⊥ and u ∈ L⊥. Furthermore, u ∈ K∗, because u = x−v and
K⊥ ⊆ K∗. Gathering all we have shown, we obtain

〈c, u〉 = −1, u ∈ K∗ ∩ L⊥.
Again, by item (ii) of Proposition 2.3, we conclude that dist (L+ c,K) > 0, which contra-
dicts our assumptions. �
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Proposition 4.6: Denote by θD-Feas the optimal value of (D-Feas). Then,

(i) θD-Feas > 0 if and only if (Conic-D) is strongly feasible.
(ii) θD-Feas = 0 if and only if (Conic-D) is in weak status (i.e. either weakly infeasible or

weakly feasible).
(iii) θD-Feas = 0 and is not attained if and only if (Conic-D) is weakly infeasible
(iv) θD-Feas < 0 if and only if (Conic-D) is strongly infeasible.

Proof: (i) First, suppose that (Conic-D) is strongly feasible and let s, y be such that

s = c−A∗y ∈ riK.

By hypothesis, we have e ∈ riK. By item (iii) of Lemma 2.2, there exists α > 1 such
that

αs+ (1− α)e ∈ riK.

Therefore,

c− te−A∗y ∈ K,

where t = (α − 1)/α. This shows that θD-Feas > 0.
Conversely, if θD-Feas > 0, there exists (t, y) such that c− te−A∗y ∈ Kwith t>0.

By item (ii) of Lemma 2.2, we have c−A∗y ∈ riK.
(ii) Suppose that (Conic-D) is in weak status. If (Conic-D) is weakly feasible, then there is

y such that (0, y) is feasible for (D-Feas). Therefore, θD-Feas ≥ 0. By item (i), we must
have θD-Feas = 0.

Next, we suppose that (Conic-D) is weakly infeasible. From item (i), we must have
θD-Feas ≤ 0. By Lemma 4.5, we have

(c+ rangeA∗) ∩ spanK �= ∅.
so Proposition 4.4 implies that (D-Feas) must be strongly feasible. In particular,
θD-Feas is finite. By Proposition 2.1, (P-Feas) has optimal value equal to θD-Feas and
there exists a feasible solution x to (P-Feas) satisfying

〈c, x〉 = θD-Feas, Ax = 0, x ∈ K∗.
If θD-Feas < 0, we would have that (Conic-D) is strongly infeasible by Proposi-
tion 2.3. Since this would contradict the weak infeasibility of (Conic-D), we must
have θD-Feas = 0. This concludes the first half of item (ii).

Now suppose that θD-Feas = 0. Then, there are sequences {tk}, {yk} such that tk→
0 and (tk, yk) is feasible for (D-Feas). Then, since c− tke−A∗yk ∈ K holds for every
k, we have

dist (c+ rangeA∗,K) ≤ ‖(c−A∗yk)− (c− tke−A∗yk)‖ ≤ ‖tke‖, ∀ k.
Since tk→ 0, this shows that dist (c+ rangeA∗,K) = 0 and, therefore, (Conic-D) is
in weak status.

(iii) From item (ii), we know that (Conic-D) is in weak status if and only if θD-Feas = 0. In
particular, if (Conic-D) is weakly infeasible then the optimal value of (D-Feas) cannot
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be attained because, otherwise, we would obtain a feasible solution to (Conic-D).
Conversely, if θD-Feas = 0 and is not attained, then (Conic-D) is in weak status and
cannot be weakly feasible, so it must be weakly infeasible.

(iv) Suppose that (Conic-D) is strongly infeasible. By items (i), (ii) and (iii), θD-Feas ≥ 0
implies that (Conic-D) is either strongly feasible or in weak status. Therefore, it must
be the case that θD-Feas < 0.

Conversely, if θD-Feas < 0, items (i), (ii) and (iii) imply that (Conic-D) is neither
strongly feasible nor in weak status. Therefore, it must be strongly infeasible. �

Remark: Item (iv) of Proposition 4.6 includes the possibility that θD-Feas = −∞,
i.e. (D-Feas) might be infeasible. This happens, for example, whenK is a subspace and c+
rangeA∗ does not intersect K. However, under the hypothesis that K is full-dimensional
(i.e. spanK = E), (D-Feas) must always be feasible, see Proposition 4.4.

From Proposition 4.6 we see that if (Conic-D) is weakly infeasible, we can obtain
almost feasible solutions to (Conic-D) by constructing almost optimal solution solutions
to (D-Feas), which can be done through the discussion in Section 4.2 and Algorithm 2. For
future reference, we register this fact as a proposition.

Proposition 4.7 (From almost optimality to almost feasibility): Suppose that ε > 0 and
that (tε , yε) is a feasible solution to (D-Feas) satisfying 0 ≥ tε ≥ −ε. Then,

dist (c−A∗yε ,K) ≤ ε‖e‖.

Proof: Since (tε , yε) is feasible for (D-Feas) we have c− tεe−A∗yε ∈ K. Therefore,

dist (c−A∗yε ,K) ≤ ‖c−A∗yε − (c− tεe−A∗yε)‖ ≤ ε‖e‖. �

To conclude this section, we present an algorithm for handling infeasibility of
(Conic-D), see Algorithm 3. The algorithm is able to distinguish between weak and strong
infeasibility and, for weakly infeasible problems, it returns almost feasible solutions. Dur-
ing the algorithm’s run, we will need to apply facial reduction to (P-Feas). For convenience,
denote by FP-Feas

min the minimal face of K∗ that contains the feasible region of (P-Feas).
Applying facial reduction to (P-Feas) leads to the following pair of problems:

inf
x
〈c, x〉 (P̂-Feas)

subject to Ax = 0

〈e, x〉 = 1

x ∈ FP-Feas
min

sup
t,y

t (D̂-Feas)

subject to c− te−A∗y ∈ (FP-Feas
min )∗.

The pair (P̂-Feas) and (D̂-Feas) satisfy the following property.

Proposition 4.8: Suppose (D-Feas) is feasible and FP-Feas
min �= ∅, then the pair (P̂-Feas),

(D̂-Feas) are both strongly feasible and their common optimal value is equal to θD-Feas.
Moreover, if FP-Feas

min = ∅ then (Conic-D) is strongly feasible.
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Algorithm 3: Determining the infeasibility status of (Conic-D)
Input: K,A, b, c, ε ((Conic-D) is assumed to be infeasible)
Output: Weakly Infeasible or Strongly Infeasible. If Weakly

Infeasible then yε such that dist (c−A∗yε ,K) ≤ ε is also returned.
1 if (c+ rangeA∗) ∩ spanK = ∅ then
2 return Strongly Infeasible /∗ Proposition 4.4 ∗/
3 end
4 Apply Algorithm 1 to (P-Feas) and let (f1, y1), . . . , (f�2 , y�2) be the obtained

corresponding reducing directions.
5 if Algorithm 1 returned Infeasible (i.e., FP-Feas

min = ∅) then
6 return Strongly Feasible /∗ Proposition 4.8, impossible by

assumption ∗/
7 else
8 Solve the pair (P̂-Feas) and (D̂-Feas) and denote the optimal value by θ and the

optimal solution of (D̂-Feas) by (t∗, y∗).
9 if θ < 0 then
10 return Strongly Infeasible /∗ Proposition 4.6 ∗/
11 else if θ = 0 then
12 Let t̂, ŷ be such that c− t̂e−A∗ŷ ∈ riK.4

13 Apply Algorithm 2 to (D-Feas) using as input (f1, y1), . . . , (f�2 , y�2), (t̂, ŷ),
(t∗, y∗), ε/‖e‖. Let yε be the output of Algorithm 2.

14 return yε and Weakly Infeasible

15 else if θ > 0 then
16 return Strongly Feasible /∗ Proposition 4.6, impossible by

assumption ∗/
17 end
18 end

Proof: Under the assumption that (D-Feas) is feasible, (D-Feas) must be, in fact, strongly
feasible, by Proposition 4.4. Therefore, the minimal face of K that contains the feasible
region of (D-Feas) isK itself. That is,

FD-Feas
min = K.

Applying Theorem 4.2 to (D-Feas) we conclude that θD-Feas is finite if and only ifFP-Feas
min �=

∅. We also obtain from item (i) of Theorem 4.2 that, if indeed FP-Feas
min �= ∅ holds, then

(P̂-Feas), (D̂-Feas) are both strongly feasible and their common optimal value must coin-
cide with θD-Feas. Alternatively, from item (ii) of Theorem 4.2, we conclude that FP-Feas

min =
∅ if and only if θD-Feas = +∞, in which case (Conic-D) must be strongly feasible by
Proposition 4.6. �
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Proposition 4.9 (Algorithm 3 is correct): The following hold.

(i) Assuming that (Conic-D) is infeasible, Algorithm 3 correctly identifies whether
(Conic-D) is strongly or weakly infeasible.

(ii) When (Conic-D) is weakly infeasible, the output of Algorithm 3 is indeed an ε-feasible
solution.

(iii) WhenK = Sn+, Algorithm 3 is implementable with O(n) calls toOint.

Proof: The correctness of Algorithm 3 follows from Proposition 4.8 and the correctness
of Algorithm 2. We will now explain some details.

By Propositions 4.6 and 4.8, to distinguish between weak and strong infeasibility it is
enough to check the following three items: whether (D-Feas) is feasible or not; whether
FP-Feas
min is empty or not; whether the optimal value of the pair (P̂-Feas) and (D̂-Feas) is

negative or zero. These three items are checked at Lines 1, 5, 9 and 11 of Algorithm 3.
At Line 1, if (c+ rangeA∗) ∩ spanK = ∅, then the optimal value of (D-Feas) is −∞

and (Conic-D) is strongly infeasible by Proposition 4.4.
However, if we progress until the check of Line 5, (D-Feas)must be strongly feasible, also

by Proposition 4.4. By this point, facial reduction is applied to (P-Feas) and if FP-Feas
min =

∅, then Proposition 4.8 tells us that (Conic-D) is strongly feasible. As we are assuming
that (Conic-D) is infeasible, this should not happen.

If the algorithm reaches Line 9 then (D-Feas) is feasible, FP-Feas
min �= ∅ and, therefore,

Proposition 4.8 applies. By Proposition 4.6, if θ < 0 it must be the case that (Conic-D)
is strongly infeasible. If θ = 0 then (Conic-D) is weakly infeasible and the correctness of
Algorithm 2 shows that (tε , yε) is indeed an ε/‖e‖ optimal solution to (D-Feas) which, by
Proposition 4.7 implies that yε must be an ε-feasible solution to (Conic-D).

Finally, suppose that K = Sn+. The only lines where SDPs need to be solved are when
Algorithm 1 is invoked and at Line 8. Algorithm 1 and Algorithm 2 require at most n+ 1
calls toOint each so, we only need to check that we can indeed solve the SDP at Line 8 with
Oint. We note that if we reach Line 8, then (D-Feas) is feasible and FP-Feas

min �= ∅ which, by
Proposition 4.8 implies that the pair (P̂-Feas) and (D̂-Feas) are both strongly feasible and
can indeed be solved byOint. Therefore, Algorithm 3 can be implemented with O(n) calls
toOint. �

To conclude, we note that, when K = Sn+, the problem at Line 12 can be solved by
invokingOint (which would not affect theO(n) complexity of Algorithm 3), but that is not
necessary. Let λmin(·) denote theminimum eigenvalue function and recall λmin(U + V) ≥
λmin(U)+ λmin(V) always holds for U,V ∈ Sn. With that, if α is positive then

α > −λmin(c−A∗ŷ)
λmin(e)

⇒ c−A∗ŷ+ αe ∈ Sn
+.

So, with two minimum eigenvalue computations, we can solve the problem in Line 12 of
Algorithm 3. As in Section 4.2.1, a strategy of starting with some negative t and doubling
it at each step would also work.

5. Completely solving (Conic-D)

Using the techniques described in Sections 3 and 4, we can now present a general algorithm
for completely solving (Conic-D), in the sense of Definition 1.1. In particular, when K =
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Sn+, we can completely solve (SDP-D) through polynomially many calls toOint. For ease of
reference, we write down below again some of the auxiliary problems that are referenced
in Algorithm 4 below.

inf
x
〈c, x〉 (P̂)

subject to Ax = b

x ∈ (FD
min)
∗

sup
y
〈b, y〉 (D̂)

subject to c−A∗y ∈ FD
min.

inf
x
〈c, x〉 (P∗)

subject to Ax = b

x ∈ F P̂
min

sup
y
〈b, y〉 (D∗)

subject to c−A∗y ∈ (F P̂
min)
∗.

Here, we recall that FD
min is the minimal face of K that contains (c+ rangeA∗) ∩K

and F P̂
min is the minimal face of (FD

min)
∗ that contains the feasible region of (P̂). We also

recall that, by Theorem 4.2, θD is finite if and only if (D-Feas) is feasible and F P̂
min �= ∅. In

this case, (P∗) and (D∗) are both strongly feasible and, when K = Sn+, they can be solved
by invoking Oint. By doing so, we are able to obtain the dual optimal value θD. Checking
whether θD is attained can be done by solving the following feasibility problem.

find y (D-OPT)

subject to c−A∗y ∈ FD
min, 〈b, y〉 = θD.

Let L : Rm→ Rm be an affine map (that is, L−u is linear for some u ∈ Rm) such that

range L = {y | 〈b, y〉 = θD}

In particular, 〈b, L(ŷ)〉 = θD holds for every ŷ. With that we can put (D-OPT) in ‘dual
standard format’ as follows

find ŷ (D-OPT-STD)

subject to c−A∗(L(ŷ)) ∈ FD
min.

We observe that (D-OPT) is feasible if and only if (D-OPT-STD) is feasible5.
Once (D-OPT-STD) is solved (for example, with Algorithm 1) and a solution ŷ∗ is
obtained, a solution to (D-OPT) is obtained by letting y∗ = Lŷ∗. Of course, it might be
the case (D-OPT) is not feasible in the first place. Nevertheless, we now have all pieces in
place, see Algorithm 4.

Theorem 5.1 (Algorithm 4 is correct): Algorithm 4 completely solves (Conic-D). That
is, it correctly determines whether (Conic-D) is feasible or not. If (Conic-D) is infeasible,
Algorithm 4 distinguishes between weak and strong infeasibility and, in case of weak infea-
sibility, an ε-feasible solution is returned. If (Conic-D) is feasible, Algorithm 4 computes the
optimal value of (Conic-D). If the optimal value is finite and attained, an optimal solution is
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Algorithm 4: Completely Solving (Conic-D)
Input: K,A, b, c, ε

1 Apply Algorithm 1 to (Conic-D) and let d1, . . . , d�1 be the corresponding reducing
directions.

2 if Algorithm 1 returned Infeasible then
3 Invoke Algorithm 3, return its outputs.
4 else
5 Let ŝ be such that ŝ ∈ riFD

min (see output 2. of Algorithm 1) and ŷ such that
c−A∗ŷ = ŝ.

6 Apply Algorithm 1 to (P̂), obtain reducing directions (f1, y1), . . . , (f�2 , y�2).
7 if F P̂

min = ∅ then
8 return ŝ and Feasible Unbounded.
9 else
10 Solve (P∗) and (D∗) and obtain θD and optimal solutions y∗, x∗ to (D∗) and

(P∗), respectively.
11 Apply Algorithm 1 to (D-OPT-STD).
12 if Algorithm 1 returned Infeasible then
13 Use Algorithm 2 with f1, . . . , f�1 , ŷ, y∗, ε as inputs and return yε (the

output of Algorithm 2), θD and Feasible Unattained.
14 else
15 Let (y, s) be the feasible solution returned by Algorithm 1.
16 return y, θD and Feasible Attained.
17 end
18 end
19 end

returned. If the optimal value is finite but not attained, an ε-optimal solution is returned. If
the optimal value is+∞, a feasible solution is returned.

In addition, ifK = Sn+, then (Conic-D) can be implemented with O(n) calls to the oracle
Oint.

Proof: To prove the result we gather everything we have done so far. We consider the
following cases.

(1) (Conic-D) is infeasible. The correctness of Facial Reduction and Algorithm 1 implies
that if (Conic-D) is infeasible, then this will be correctly detected after Line 1. Further-
more, the correctness of Algorithm 3 (Proposition 4.9) ensures that weak infeasibility
and strong infeasibility will be correctly detected. And, in case of weak infeasibility, an
ε-feasible solution will be returned.

(2) (Conic-D) is feasible but unbounded. If the algorithm advances until Line 7, it is
because (Conic-D) is feasible and, in particular,FD

min is not empty. In this case, we are
under the hypothesis of Theorem 4.2. By item (ii) of Theorem 4.2, we have θD = +∞
if and only if F P̂

min = ∅.
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(3) (Conic-D) is feasible, θD is finite but not attained. In that case, when Algorithm 1
is invoked at Line 11, it is correctly detected that (D-OPT-STD) is infeasible and
Algorithm 2 correctly constructs an ε-optimal solution.

(4) (Conic-D) is feasible, θD is finite and attained. In that case, when Algorithm 1 is
invoked at Line 11, a feasible solution to (D-OPT-STD) will be obtained, which
corresponds to an optimal solution to (Conic-D).

For the last part of the proof, suppose thatK = Sn+. Algorithm 4 directly invokes facial
reduction (Algorithm 1) at most 3 times (Lines 1, 6 and 11). It also directly invokes Algo-
rithms 2 and 3 at most one time, each. The only other time where SDPs need to be solved is
at Line 10 where we need to solve the SDPs (P∗) and (D∗), which are both strongly feasible
(item (i) of Theorem 4.2) and therefore can be solved by a single call toOint. By Proposi-
tions 3.6, 4.9 and the discussion in Section 4.2.1 we have that Algorithms 1, 2 and 3 can
also be implemented withO(n) calls toOint, so the same must be true of Algorithm 4. �

See Appendix 2 for an example where Algorithm 4 is applied to an instance that has a
finite nonzero duality gap and unattainment at both primal and dual sides.

6. Comparison with other approaches

One of the features of this work is the interior point oracle Oint and its application to the
complete solvability of semidefinite programs. Related to this task, the usage of reducing
directions to the construction of almost optimal solutions and almost feasible solutions
for general conic linear programs seems to be new, although some of those ideas were
present in our previous works on semidefinite programming [22] and second-order cone
programming [24]. Technical results on facial reduction and double facial reduction such
as Proposition 4.2, Theorems 4.1 and 4.2 seem to be novel as well. Nevertheless, the idea
of completely solving a problem in some sense is not necessarily new and, in this section,
we compare our approach with other proposals in the literature that had similar goals.

In Section 5.10 of [7], de Klerk, Terlaky and Roos have described a possible sequence
of steps to solve (SDP-D). Their tool of choice is a self-dual embedding strategy of the
original pair (SDP-P) and (SDP-D). As wementioned before, in the absence of both primal
and dual strong feasibility, the embedded problemmight fail to reveal the optimal value of
the original problem or detect infeasibility/non-attainment. To account for that, they go
for a second step, where they consider an embedded problem using Ramana’s dual. The
Ramana’s dual (PR) is a substitute for (SDP-P) and they consider the pair formed by (PR)
and its dual (Dcor), which is a ‘corrected’ version of (SDP-D). The pair (PR,Dcor) can then
be solved by their embedding strategy to find θD. As the embedded problem is both primal
and dual strongly feasible, it is possible to invokeOint to solve it. However, if the solution
given by Oint is not of maximum rank at both steps, their strategy might not work. We
should mention that they do show in detail how to build an interior point method suitable
for their approach. Our analysis, on the other hand, is completely agnostic to the inner
workings of the interior point oracle and no assumption is made on the optimal solutions
returned byOint.

As our approach does not rely on Ramana’s dual, our analysis is easily generalizable
to other classes of cones. Indeed, Algorithm 4 is valid and correct for any closed convex



OPTIMIZATION METHODS & SOFTWARE 461

cone K. We remark that although there is a strong connection between Ramana’s dual
and facial reduction [35,42], no similar construction is known for any other class of cones.
For example, following Pataki’s approach in [35], one could formulate an alternative dual
system for a second-order cone programming problem. Such a system would have many
of the properties that Ramana’s dual has, but it is not clear whether that system can be
expressed via second-order cone constraints.

Permenter, Friberg and Andersen present in [36] a very elegant approach for general
conic linear programming based on self-dual embeddings and they are able to achieve
most of the goals included in Definition 1.1. They showed that the relative interior of the
set of solutions to a certain self-dual embedding of the pair (Conic-P) and (Conic-D) will
reveal reducing directions for (Conic-P) and (Conic-D) under certain circumstances, see
Corollary 3.3 in [36]. They used this property to present an algorithm for solving (Conic-P)
and (Conic-D) while identifying several pathologies, see Algorithms 1 and 2 in [36].

We remark that even if (Conic-P) and/or (Conic-D) are not strongly feasible, it
could still be the case that the duality gap is zero and both problems are attained.
In this case, certain self-dual embeddings might recover optimal solutions to the
pair (Conic-P), (Conic-D) even in the absence of strong feasibility. Indeed, a crucial advan-
tage of the approach in [36] is that a facial reducing step is performed only if it strictly
necessary in order to recover zero duality gap and attainment, see item (1) of Theorem 4.1
therein. As such, the approach in [36] regularizes a problem only if needed.

However, themain drawback in [36] seems to be the fact that it requires a relative interior
solution to their self-dual embedding, which is a stronger requirement than our assump-
tion of having access to Oint, since Oint is allowed to return any optimal solution. While
relative interior optimal solutions might be obtainable via interior point algorithms, this
is not necessarily true for other methods. Nevertheless, although our algorithm is more
general, the approach in [36] seems to be more likely to lead to a practical implementation
than ours, especially in conjunction with interior point methods. Indeed, the numerical
experiments in Section 5 of [36] suggest that even when reducing directions are computed
inexactly there are cases where they are still useful for analysing the problem, although
sometimes these approximate directions can also lead to incorrect conclusions.

Finally, we remark on the difference between the double reformulation proposed by
Pataki [33] and our double facial reduction of Section 4. In Definition 1 of [33], Pataki
defined that a reformulation of (SDP-P) and (SDP-D) corresponds to the SDP primal and
dual pair obtained by applying certain elementary operations to (SDP-P) and (SDP-D).
These elementary operations preserve the properties of the original problem such as duality
gaps and whether the optimal value is attained or not. In simplified terms, Pataki showed
in Theorem 4 of [33] that (SDP-D) can be ‘doubly reformulated’ as

sup
y
〈b′, y〉 (SDP-Ref)

subject to c′ −
m∑
i=1

A′iyi ∈ Sn
+,

where Ai ∈ Sn for all i and in such a way that c′ belongs to riFD
min. Furthermore, for

some �, (c′,A′1, . . . ,A′�) can be used to obtain the minimal face associated to the so-called
‘homogeneous dual’ of (SDP-Ref). So, this double reformulation, in a sense, reveal both the
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minimal face of (SDP-Ref) and the minimal face associated to a homogenized version of
the corresponding dual problem of (SDP-Ref).

As far as we could see, the homogeneous dual of (SDP-Ref) is related but it is quite dif-
ferent from either (P̂) or (P∗) even whenK = Sn+. We note that the homogeneous dual in
Theorem 4 of [33] is computed with respect the cone Sn+ and not with respect the minimal
face associated to (SDP-Ref). Therefore, the closest analogous of the double reformula-
tion in our setting would be if we applied the second facial reduction to (Conic-P) instead
of applying to (P̂). In conclusion, it seems to us that double facial reduction and Pataki’s
double reformulation serve different purposes.

7. Concluding remarks

In this paper, we have discussed how to use facial reduction and double facial reduction to
completely solving (Definition 1.1) a general conic linear program, under the assumption
that certain auxiliary problems can be solved, see Algorithm 4 and Theorem 5.1. When
specialized to the particular case of semidefinite programming, these results imply that an
arbitrary semidefinite program over n× nmatrices can be completely solved by invoking
at mostO(n) times an oracle that only return solutions to primal and dual strongly feasible
SDPs. We also provided technical results on facial reduction and double facial reduction
that might be of independent interest, see Sections 3 and 4.

For limitations, drawbacks and comparison to other approaches, see Sections 1.3 and 6.
In particular, as discussed in Section 1.3, in our analysis we assumed that the oracle Oint
returns an exact solution. An interesting topic of future research would be to consider the
effects of impreciseness in the solutions returned byOint.

Notes

1. One must be careful that even if (Conic-D) is infeasible it might be the case that alternative (ii)
is not satisfied at this stage. This happens, for instance, if (Conic-D) is weakly infeasible.

2. The fact that Fi and Fi+1 are faces is important, because, in general, C1 � C2 does not imply
dimC1 < dimC2.

3. Away to see that thismust be true is through the correctness ofAlgorithm2. Lines 2 and 9 ensure
that Algorithm 2 returns an ε-optimal yε for which the slack c−A∗yε is a relative interior point
of the minimal face of (Conic-D).

4. By Proposition 4.4, (t̂, ŷ) must exist because if we have reached this line, (Conic-D) is not
strongly infeasible.

5. If y is feasible for (D-OPT), then y ∈ range L, so there exists ŷ such that L(ŷ) = y. Reciprocally,
if ŷ is feasible for (D-OPT-STD) then Lŷ is feasible for (D-OPT).

6. Which it does since we are assuming (Conic-P) is (strongly) feasible.
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Appendix 1. The proof of Proposition 2.5

In this appendix we discuss and prove Proposition 2.5, which we restate below.

Proposition: Let K be as in (7) with some orthogonal matrix R, some r ≤ n, and some linear sub-
space L ⊆ Sn such that L ⊆ (Sr,n

+ )⊥. Suppose that (Conic-P) and (Conic-D) are strongly feasible.
Then, (Conic-P) and (Conic-D) are solvable with a single call toOint.

Proof: In what follows, letA1, . . . ,Am ∈ Sn be such that

c−A∗y = c−
m∑
i=1

Aiyi, and Ax = b⇔ 〈Ai, x〉 = bi, i = 1, . . . ,m.

SinceK is as in (7), we have

RKR� = Sr,n
+ ⊕ L, ri (RKR�) = (riSr,n

+ )⊕ L, (A1)

(RKR�)∗ = Sr,n
+ ⊕ (L⊥ ∩ (Sr,n

+ )⊥), ri (RKR�)∗ = (riSr,n
+ )⊕ (L⊥ ∩ (Sr,n

+ )⊥). (A2)

Furthermore,

riSr,n
+ =

{(
U 0
0 0

)
∈ Sn

∣∣∣∣U ∈ Sr
++

}
, (A3)

where Sr++ denotes the set of r × r real symmetric positive definite matrices. Let Sr,n denote the
span of Sr,n

+ . The proof is divided in four cases and we will show that each case leads back to the
previous one.
Case 1. L = (Sr,n)⊥, i.e.K = (Sr,n

+ )∗. R is the identity matrix.
Let πr : Sn → Sr be the orthogonal projection that maps x ∈ Sn on its upper-left r × r block.

We can reformulate (Conic-P) and (Conic-D) as follows

inf
x̂
〈πr(c), x̂〉 (P)

subject to 〈πr(Ai), x̂〉 = bi, i = 1, . . . ,m

x̂ ∈ Sr
+

sup
y
〈b, y〉 (D)

subject to πr(c)−
m∑
i=1

πr(Ai)yi ∈ Sr
+.

We note that s ∈ K, if and only if the upper-left r × r block of s is positive semidefinite. There-
fore, (D) and (Conic-D) are equivalent in the sense that they share the same feasible solutions and
have the same optimal value. From (A1), we see that (Conic-D) is strongly feasible if and only if (D)
is strongly feasible.

Similarly, x ∈ K∗ if and only the upper-left r × r block of x is positive semidefinite and the other
entries are zero. Therefore,

〈A, x〉 = 〈πr(A),πr(x)〉, ∀ A ∈ Sn.

Accordingly, if x is a feasible solution to (Conic-P) such that x ∈ riK∗, then πr(x) ∈ riSr+ and πr(x)
is feasible for (P). Conversely, if x̂ is feasible for (P), then π∗r (x̂) is feasible for (P). Furthermore, x̂ ∈
Sr,n
+ ⇔ π∗r (x̂) ∈ K∗, where π∗r is the adjoint of πr . We conclude that (Conic-P) is strongly feasible

if and only if (P) is strongly feasible. Also, both problems have the same optimal values.
Therefore, if (Conic-D) and (Conic-P) are both strongly feasible, the same is true for the pair

(P) and (D). Since (P) and (D) are bona fide SDPs, they can be solved with Oint. The preceding
discussion shows how to recover optimal solutions to (Conic-D) and (Conic-P) from the solutions
to (D) and (P).
Case 2. L = {0}, i.e.K = Sr,n

+ . R is the identity matrix.
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First, we recall that the role of primal and dual problems in conic linear programming is inter-
changeable in the following sense. Given A, b, c,K, we can find Â, b̂, ĉ such that (Conic-D) is
‘equivalent’ to

inf
s
〈ĉ, s〉 (P-D)

subject to 〈Âi, s〉 = b̂i, i = 1, . . . ,m

s ∈ K,

which is a problem in ‘primal format’, where the feasible solutions correspond to the feasible slacks
of (Conic-D). Only linear algebra is needed to find Â, b̂, ĉ. For example, we can take Â, b̂ to be such
that

s ∈ c+ rangeA∗ ⇔ Âs = b̂.
Next, let ĉ be such thatAĉ = b. Here, ĉ is not required to be feasible for (Conic-P), so no SDPs need to
be solved in order to obtain ĉ. Nevertheless, if y is a feasible solution to (Conic-D) and s = c−A∗y,
we have

− 〈b, y〉 = 〈ĉ,−c+ c−A∗y〉 = −〈ĉ, c〉 + 〈ĉ, s〉. (A4)
From (A4), we draw two conclusions. The first is that, provided that the linear system Ax = b has a
solution6, then 〈b, y〉 = 〈b, y′〉 if y, y′ are associated to the same slack of (Conic-D). Therefore, with-
out ambiguity we can associate an objective value to an slack s of (Conic-D). The second conclusion
is that the optimal values of (P-D) and (Conic-D) differ by the constant 〈ĉ, c〉.

We can now explain in which sense (Conic-D) and (P-D) are equivalent. Every feasible slack of
(Conic-D) is a feasible solution to (P-D) (and vice-versa), and their objective values differ by 〈ĉ, c〉.
In particular, given an optimal solution s∗ to (P-D), any y∗ satisfying s∗ = c−A∗y∗ will be optimal
to (Conic-D). Furthermore, (Conic-D) is strongly feasible if and only if (P-D) is strongly feasible.

The dual counterpart of (P-D) is equivalent to (Conic-P) in an analogous fashion and the similarly
cumbersome details are omitted.

In Case 2, K∗ corresponds to the cone K in Case 1. The overall conclusion is that in order to
return to Case 1, it is enough to reformulate (Conic-D) as a problem in primal format.
Case 3. L ⊆ (Sr,n)⊥ is arbitrary. R is the identity matrix.
Let E1, . . . ,E� be a basis for L. In view of (A1), (A2), we have that (Conic-D) and (Conic-P) are

equivalent to the following pair of problems.

inf
x
〈c, x〉 (P)

subject to 〈Ai, x〉 = bi, i = 1, . . . ,m

〈Ej, x〉 = 0, j = 1, . . . , �

x ∈ (Sr,n
+ )∗

sup
y,t
〈b, y〉 (D)

subject to c−
m∑
i=1

Aiyi −
�∑

j=1
Ejtj ∈ Sr,n

+

In particular, the feasible solutions and the optimal value of (P) and (Conic-P) are the same.
Furthermore, y is feasible for (Conic-D) if and only if there exists t such that (y, t) is feasible for (D).

The pair of problems (P) and (D) are in the format described in Case 2.
Case 4. L ⊆ (Sr,n)⊥ is arbitrary, R is an arbitrary orthogonal matrix.
We observe that

c−
m∑
i=1

Aiyi ∈ R�(Sr,n
+ ⊕ L)R ⇔ RcR�−

m∑
i=1

RAiR�yi ∈ Sr,n
+ ⊕ L.

Therefore, replacing the c,A1, . . . ,Am byRcR�,RA1R�, . . . ,RAmR� in (Conic-D), (Conic-P) leads
to an equivalent problem that falls under Case 3. �
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Appendix 2. An example

In this appendix, we show an example of the application of Algorithm 4 to a problem that has a
nonzero duality gap and such that both primal and dual optimal values are not attained.

In the following, we denote the r × r zero matrix and identity matrix by 0r and Ir , respectively.
Similar to Section 2.2, when it is clear from context, we use 0 to denote a zero matrix of appropriate
size. Furthermore, when an entry of a matrix is omitted, it is assumed to be zero.

Let us consider the following problem.

sup
y∈R8

− y4 − 2y6 − 2y7 (D)

subject to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 y3 − 1
y1 y5 − 1

y2 y3
y3 y4 − y5

y4 −0.5y8 + 0.5 y6
−0.5y8 + 0.5 y8 y7

y6 y7 0
y3 − 1 y5 − 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ S8
+.

We also select c,A1, . . . ,A8 ∈ S8 such that (y1, . . . , y8) is feasible for (D) if and only if

c−
8∑

i=1
Aiyi ∈ Sn

+. (A5)

The corresponding primal of (D) is

inf
x
− 2x18 − 2x28 + x56 (P)

subject to − x11 − x22 = 0

− x33 = 0

− 2x18 − 2x34 = 0

− x44 − x55 = −1
− 2x28 + x44 = 0

− 2x57 = −2
− 2x67 = −2
x56 − x66 = 0

x ∈ S8
+.

A2.1. The optimal values of (P) and (D) and their unattainment

We check that θD = −1, θP = 0 and that neither (D) nor its primal are attained.
Let y be a feasible solution for (D). At the dual side (D), the (7, 7) and (8, 8) entries are 0, therefore

any feasible ymust satisfy
y3 = y5 = 1, y6 = y7 = 0.

In addition, we have
y4 − y5 = y4 − 1 ≥ 0,

since the (4, 4) entry must be nonnegative. Similarly, we have y8 ≥ 0. It follows that θD ≤ −1.
However, for every ε > 0,

yε = (0, 1/ε, 1, 1+ ε, 1, 0, 0, 0)
is a feasible solution that has value equal to−1− ε. This shows that θD = −1.
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We will now show that θD is not attained. For the sake of obtaining a contradiction, suppose
that we had y4 = 1 for some feasible y. Since y5 = 1, this would imply that the (4, 4) entry is zero.
This forces y3 to be zero and, consequently, the (1, 8) entry must −1, which contradicts positive
semidefiniteness.

Next, we move on the primal problem (P). Let x be a feasible solution to (P). The first and second
equality constraints force

x11 = x22 = x33 = 0,
which implies that x18 = x28 = 0. Then, the fifth constraint implies that x44 = 0. Therefore, x55 = 1
by the fourth constraint. The last equality constraint forces x56 = x66, which implies that θP ≥ 0.
Putting everything together we have that x is feasible for (P) if and only if x is positive semidefinite
and has the following shape ⎛

⎜⎜⎜⎝

04
1 x56 x57 x58
x56 x56 1 x68
x57 1 x77 x78
x58 x68 x78 x88

⎞
⎟⎟⎟⎠ . (A6)

Then, because x67 = 1, we can never assign zero to x66 = x56. However, if x66 = x56 is small but
positive, we can construct feasible points by taking

x57 = x58 = x68 = x78 = 0

and taking x77 and x88 to be very large. This shows that θP = 0 but is not attained.

A2.2. Applying Algorithm 4

We runAlgorithm 4with (D) as input. The first step is to apply facial reduction (Algorithm 1) to (D).
A possible reducing direction is

d1 =
(
06 0
0 I2

)
.

Let F = S8+ ∩ {d1}⊥, then

F = S6,8
+ =

{(
U 0
0 0

)
∈ S8

∣∣∣∣U ∈ S6
+

}
.

Recalling (A3), the relative interior of F correspond to the matrices in F for which U is positive
definite. Therefore, we see that F is the minimal face FD

min of (D) by constructing the following
feasible solution

ŷ = (ŷ1, ŷ2, ŷ3, ŷ4, ŷ5, ŷ6, ŷ7, ŷ8) = (1, 2, 1, 2, 1, 0, 0, 1). (A7)
Indeed, ŝ = c−A∗ŷ is a matrix with nonzero entries

ŝ11 = ŝ22 = ŝ44 = ŝ66 = 1, ŝ33 = ŝ55 = 2, ŝ34 = ŝ43 = 1,

which is a relative interior point ofF . Let (D̂) be the problemobtained by replacingS8+ byFD
min = F

in (D) (see also Section 4.1). Let (P̂) be the ‘dual’ problem of (D̂), which is obtained by replacing S8+
by (FD

min)
∗ in (P). Then (FD

min)
∗ satisfies

(FD
min)
∗ = (S6,8

+ )∗ =
{(

U V
V� W

)
∈ S8

∣∣∣∣U ∈ S6
+

}
. (A8)

This has the effect of relaxing the constraint ‘x ∈ S8+’ to merely requiring that the upper-left 6× 6
block of x be positive semidefinite. The relative interior of (FD

min)
∗ correspond to thematrices in (A8)

for which U is positive definite.
At this stage, (D̂) is strongly feasible and shares the same optimal value with (D). Because of this,

the duality gap between (P̂) and (D̂) is zero and (P̂) has an optimal solution of value−1. Indeed, let



470 B. F. LOURENÇO ET AL.

x be the symmetric matrix having

x56 = x66 = −1, x57 = x67 = x55 = 1

and let the other entries be zero. Then x ∈ (FD
min)
∗ and is an optimal solution to (P̂). Though it

possesses an optimal solution, (P̂) may not be strongly feasible. We also remark that (D̂) does not
have an optimal solution, since the feasible regions of (D) and (D̂) are the same and (D) does not
have an optimal solution as we saw previously.

The next step inAlgorithm4 is applying facial reduction to (P̂).We observe that (P̂) is not strongly
feasible. The first two equality constraint in (P) and (A8) yields that any feasible solution to (P̂) must
have the upper-left 3× 3 block equal to zero.

Let y1 ∈ R8 be such that y11 = y12 = 1 and the other entries are zero. A reducing direction to (P̂)
is given by the following matrix

f1 =
(
I3 0
0 05

)
= −

8∑
i=1

Aiy1i = −A1 −A2, (A9)

where Ai is as in (A5). Let F̂ := (FD
min)
∗ ∩ {f1}⊥. F̂ is a face of (FD

min)
∗ that can be described as

follows.

F̂ =
⎧⎨
⎩

⎛
⎝ 03 0 V1

0 U V2
V�1 V�2 W

⎞
⎠ ∈ S8

∣∣∣∣∣∣U ∈ S
3
+

⎫⎬
⎭ . (A10)

The relative interior of F̂ consists of the matrices in (A10) for whichU ∈ S3+ is positive definite. We
see that F̂ is the minimal face of (P̂) by letting x ∈ F̂ such that

x45 = x46 = 0, x57 = x67 = 1, x56 = x66 = 0.25, x44 = x55 = 0.5, x28 = 0.25,

Next, let (P∗) denote the problem obtained by replacingS8+ by F̂ in (P). Let (D∗) be the correspond-
ing dual problem, which is obtained by replacing S8+ by F̂∗ in (D). We have

F̂∗ =
⎧⎨
⎩

⎛
⎝W V1 V2
V�1 U 0
V�2 0 02

⎞
⎠ ∈ S8

∣∣∣∣∣∣U ∈ S
3
+

⎫⎬
⎭ . (A11)

By Theorem 4.2, we have θD = θP∗ = θD∗ = −1. And, indeed, the following solution y∗ is optimal
to (D∗) with 〈b, y∗〉 = θD = −1.

y∗ = (y1, y2, y3, y4, y5, y6, y7, y8) = (0, 0, 1, 1, 1, 0, 0, 1). (A12)

The nonzero entries of the slack matrix s∗ = c−A∗y∗ are
s∗55 = s∗66 = 1, s∗34 = s∗43 = 1.

We note that s∗ ∈ F̂∗ but s∗ �∈ FD
min and s∗ �∈ S8+. Thus, y∗ is not a feasible solution to (D̂) nor (D).

At this stage, (P∗) and (D∗) are both strongly feasible and they can be solved by the interior point
oracle, as in Line 10 of Algorithm 4. Knowing that the common optimal value of (P∗) and (D∗) is
−1, Algorithm 4 then checks whether there is an optimal solution to (D) by solving (D-OPT-STD).

Since we already know that (D) is not attained, we skip this step and go to construction of an
almost optimal solution to (D). Let ŷ, (f1, y1), y∗ be as in (A7), (A9), (A12), respectively. We feed
(f1, y1), ŷ, y∗ and some ε > 0 to Algorithm 2.

Suppose that, say, ε = 0.1. Recall that 〈b, ŷ〉 = −2. Let

β = θD − 〈b, ŷ〉 − ε

θD − 〈b, ŷ〉 = 0.9.
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The computation done in Algorithm 2 boils down to finding α > 0 such that

c−
8∑

i=1
Ai(βy∗i + (1− β)ŷ+ αy1) = βs∗ + (1− β)ŝ+ αf1 ∈ riFD

min.

Since 〈b, y1〉 = 0, moving in the direction of y1 does not change the objective value, and since f1 is
positive semidefinite, it does not violate the cone constraint, nomatter how large α is. Taking α = 10
is enough for the purpose, so, we see that

ỹ = βy∗i + (1− β)ŷ+ 10y1

is an ε-optimal solution to (D). Indeed, s̃ = c−A∗ỹ is a positive semidefinitematrix whose nonzero
entries are

s̃11 = s̃22 = 10.1, s̃33 = 10.2, s̃55 = 0.1, s̃66 = 1, s̃34 = s̃43 = 1.
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