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Abstract. We analyze self-dual polyhedral cones and prove several properties about their slack
matrices. In particular, we show that self-duality is equivalent to the existence of a positive semi-
definite (PSD) slack. Beyond that, we show that if the underlying cone is irreducible, then the
corresponding PSD slacks are not only doubly nonnegative matrices (DNN) but are extreme rays
of the cone of DNN matrices, which correspond to a family of extreme rays not previously de-
scribed. More surprisingly, we show that, unless the cone is simplicial, PSD slacks not only fail to
be completely positive matrices but they also lie outside the cone of completely positive semidefinite
matrices. Finally, we show how one can use semidefinite programming to probe the existence of
self-dual cones with given combinatorics. Our results are given for polyhedral cones but we also
discuss some consequences for negatively self-polar polytopes.
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1. Introduction. Slack matrices of polytopes or polyhedral cones codify their
structure in matrix form [22]. Since their introduction in [54] they have provided
a fundamental tool for the study of the complexity of combinatorial optimization
problems. For example, obtaining bounds to certain factorization ranks (such as the
nonnegative rank or the semidefinite rank) for these matrices provides a way to bound
the extension complexity of the underlying polytopes [19, 27, 37]. Slack matrices
have also been used to attack problems of realizability or projective uniqueness for
polytopes [24, 26].

In this work, we use the study of self-duality of convex cones, a classical subject in
both convex and discrete geometry [6, 5, 30, 42], to make a surprising connection be-
tween the theory of slack matrices and the geometry of some important matrix cones.
It turns out that slack matrices of self-dual polyhedral cones are deeply connected
with the extreme rays of the doubly nonnegative matrices, the completely positive
matrices, and, more generally, the completely positive semidefinite matrices. These
three matrix cones are widely studied examples of convex cones with nontrivial geom-
etry [9, 10, 36]. They have important theoretical applications and have been a fruitful
target for research for several decades now.
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1097

We focus our attention on polyhedral cones that are self-dual with respect to
some inner product. The most classical example is the nonnegative orthant \BbbR n

+, but
there are many more such cones. For example, it is possible to construct polyhedral
self-dual cones in \BbbR 3 generated by regular polygons with any odd number of vertices;
see [6, p. 152] for the details. Our main results are as follows.

(i) A polyhedral cone is self-dual with respect to some inner product if and only
if one of its slack matrices is positive semidefinite (PSD). Furthermore, if one
of its slack matrices is PSD, then, rearranging the rows and rescaling the
columns if necessary, all of them are PSD (see Theorem 3.6). This fits in
with the general philosophy that geometric properties of polyhedral sets get
translated to linear algebraic properties of slack matrices.

(ii) Because slack matrices have nonnegative entries, the PSD slacks of self-dual
cones are actually doubly nonnegative (DNN) matrices. It turns out that
when the underlying cone is irreducible the PSD slack matrices are not only
DNN matrices, but they must be extreme rays of the cone of DNN matri-
ces (see Theorem 4.7). For 5\times 5 DNN matrices this leads to an interesting
characterization of extreme rays in terms of self-dual cones over a pentagon
(see Theorem 4.10). And, more generally, we can generate new families of
extreme rays of the DNN matrices distinct from the ones constructed in [31].

(iii) We show that nondiagonal PSD slack matrices of self-dual polyhedral cones
not only lie outside the cone of completely positive (CP) matrices, but they
also do not belong to the cone of completely positive semidefinite matrices (see
Theorem 4.19 and Corollary 4.20). The cone of completely positive semidefi-
nite matrices is a far reaching generalization of CP matrices with many inter-
esting applications [36]. Through our results, we can generate many examples
of DNN matrices that fail to be completely positive semidefinite.

(iv) Finally, we use the new characterization of self-duality to propose a semidefi-
nite programming approach to numerically search for self-dual realizations of
a given combinatorial type of polyhedral cone. We then apply this framework
to enumerate low-dimensional self-dual polyhedral cones with few extreme
rays.

This paper is organized as follows. In section 2 we discuss the notation and some
background material. In section 3, we present the basic results concerning the slack
matrices of self-dual polyhedral cones and provide an alternative interpretation of
these results in terms of polytopes. Then, in section 4 we prove our results con-
cerning the extreme rays of the doubly nonnegative cone and the completely positive
semidefinite matrices. Finally, some numerical explorations obtained by means of
semidefinite programming and future perspectives are presented in section 5.

2. Preliminaries. Let \scrK \subseteq \BbbR d be a closed convex cone and let \langle \cdot , \cdot \rangle be an inner
product for \BbbR d. Then, the dual cone of \scrK with respect to \langle \cdot , \cdot \rangle is

\scrK \ast := \{ y \in \BbbR d | \langle x, y\rangle \geq 0 \forall x\in \scrK \} .(2.1)

We recall that the lineality space of \scrK is \scrK \cap  - \scrK and is the largest subspace contained
in \scrK . We also have the following relation:

\scrK \cap  - \scrK = (\scrK \ast )\bot ,(2.2)

where the notation C\bot indicates elements orthogonal to a subset C \subseteq \BbbR d with respect
to the inner product \langle \cdot , \cdot \rangle . The span and dimension of \scrK will be denoted by span\scrK 
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1098 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

and dim\scrK , respectively. With that, \scrK is said to be pointed if \scrK \cap  - \scrK = \{ 0\} and
full-dimensional if dim\scrK = d. If \scrK can be written as the set of solutions of finitely
many linear equalities and inequalities, then \scrK is said to be polyhedral .

A face of \scrK is a convex cone F \subseteq \scrK such that the condition ``x, y \in \scrK , x+ y \in F""
implies x, y \in F . An extreme ray is a face of the form \{ \alpha x | \alpha \geq 0\} for some x \in \scrK .
In this case, we say that F is the extreme ray generated by x. A facet is a face of \scrK 
that has dimension dim\scrK  - 1.

We denote the set of real n\times m matrices by \BbbR n\times m. If A \in \BbbR n\times m, the transpose
and inverse (if existing) of A will be denoted by AT and A - 1, respectively. We denote
by cone rows(A) the convex cone in \BbbR m generated by its rows and by cone cols(A)
the convex cone in \BbbR n generated by its columns.

Given closed convex cones \scrK \subseteq \BbbR d1 and \scrK \prime \subseteq \BbbR d2 we say that \scrK and \scrK \prime are
linearly isomorphic if there exists a linear bijection A : span\scrK \mapsto \rightarrow span\scrK \prime such that
A(\scrK ) =\scrK \prime . If d1 = d2, the dual cones are related as follows:

\scrK \prime \ast = (A\ast ) - 1\scrK \ast ,(2.3)

where A\ast is the adjoint of A according to the underlying inner product.
The space of n \times n real symmetric matrices will be denoted by \scrS n. The cone

of positive semidefinite (PSD) matrices in \scrS n will be denoted by \scrS n
+. The doubly

nonnegative matrices (i.e., matrices that are PSD and nonnegative) in \scrS n will be
denoted by DNNn. Finally, we denote by CPn the cone of n\times n completely positive
matrices, which we recall consists of the n\times n matrices A admitting a decomposition
A=XXT for some X \in \BbbR n\times m such all the entries of X are nonnegative.

2.1. Inner products and self-duality. We will use the notation \scrK \ast 
Euc to indi-

cate the dual cone of \scrK obtained under the Euclidean inner product so that

\scrK \ast 
Euc :=

\bigl\{ 
y \in \BbbR d | xT y\geq 0 \forall x\in \scrK 

\bigr\} 
.

We note that if the inner product \langle \cdot , \cdot \rangle changes, then the dual cone \scrK \ast changes as well.
In particular, if A is the positive definite matrix associated to some inner product \langle \cdot , \cdot \rangle ,
the corresponding dual of \scrK can be written as

\scrK \ast := \{ y \in \BbbR d | xTAy\geq 0 \forall x\in \scrK \} =A - 1\scrK \ast 
Euc.(2.4)

Conversely, if \^\scrK = A - 1\scrK \ast 
Euc for some positive definite matrix A, then the dual of

\scrK under the inner product induced by A is precisely \^\scrK . In conclusion, all possible
distinct dual cones of \scrK are given by A - 1\scrK \ast 

Euc, where A is a symmetric positive
definite matrix.

With these subtleties in mind, we define self-duality as follows.

Definition 2.1 (self-dual cones). A closed convex cone \scrK \subseteq \BbbR d is said to be
self-dual if there exists some inner product \langle \cdot , \cdot \rangle under which \scrK =\scrK \ast . In this case, we
say that \scrK is self-dual with respect to \langle \cdot , \cdot \rangle .

Typical examples of self-dual cones include the nonnegative orthant and the pos-
itive semidefinite matrices. However, there are many more self-dual cones, as we will
see throughout this paper (see also [6]).

We remark that in Definition 2.1, it is entirely possible that \scrK is self-dual but
\scrK \not = \scrK \ast 

Euc. One such example is the so-called power cones (see [15, section 4.3.1]).
Still, self-duality can be characterized in terms of \scrK \ast 

Euc as follows.
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1099

Proposition 2.2 (e.g., [32, Proposition 1]). Let \scrK \subseteq \BbbR d be a closed convex cone.
Then, there exists an inner product on \BbbR d such that \scrK =\scrK \ast if and only if there exists
a symmetric positive definite matrix A such that A\scrK =\scrK \ast 

Euc.

Proposition 2.2 has the following consequence. In order to show that \scrK is not
self-dual, it does not suffice to merely check that \scrK \not =\scrK \ast 

Euc; one must go through the
harder task of showing that \scrK is not linearly isomorphic to \scrK \ast 

Euc through a positive
definite matrix. It might be fair to say that this latter task is significantly harder
than the former.

For example, for the p-cones \scrL n+1
p := \{ (t, x) \in \BbbR \times \BbbR n | t \geq \| x\| p\} , where \| \cdot \| p is

the p-norm, it is straightforward to verify that if p \in (1,\infty ), p \not = 2, and n \geq 2, then
\scrL n+1
p \not = (\scrL n+1

p )\ast Euc =\scrL n+1
q , where 1/p+1/q= 1. However, checking that \scrL n+1

p is never
self-dual with respect to any inner product requires more work and is a consequence
of the fact that for those p and n the cone \scrL n+1

p is never isomorphic to its dual cone
(see [32, Theorem 11 and Corollary 14] or [38, section 5.2]. A more subtle type of
failure happens for the cone \scrL 3

1, which is actually isomorphic to its Euclidean dual
cone \scrL 3

\infty := \{ (t, x) \in \BbbR \times \BbbR 2 | t \geq \| x\| \infty \} but the isomorphism cannot be realized
through a positive definite matrix so \scrL 3

\infty is not self-dual, e.g., see [32, equation (2)
and the proof of Corollary 14]. These subtleties are important because, for example,
a cone may become symmetric under a change of inner product [43], and symmetric
cones enjoy many favorable theoretical properties [17, 18].

3. Self-dual polyhedral cones. In this work we will focus on the polyhedral
cones that are self-dual according to Definition 2.1. The main tool we will use for
our explorations will be slack matrices, so we first present a basic discussion of their
properties.

3.1. Slack matrices and basic properties. We start with the following
definition.

Definition 3.1 (slack matrices). Let \scrK \subseteq \BbbR d be a pointed full-dimensional poly-
hedral cone and let \scrK \ast be the dual cone with respect to some inner product. Let n and
m be the number of extreme rays of \scrK and \scrK \ast , respectively. A slack matrix of \scrK is
a matrix M \in \BbbR n\times m constructed as follows. Let \{ x1, . . . , xn\} and \{ y1, . . . , ym\} be sets
of generators for all the extreme rays of \scrK and \scrK \ast , respectively. Then Mij = \langle xi, yj\rangle 
for i\in \{ 1, . . . , n\} , j \in \{ 1, . . . ,m\} .

The set of slack matrices of \scrK is denoted by \scrS (\scrK ).

Remark 3.2. The notion of slack matrix is more commonly used for polytopes,
and there is some variation on how it is defined, especially in the case of cones. Our
definition of slack matrices is slightly more strict than, say, the one in [22], where
redundancies are allowed. For example, in [22] it is possible that a slack matrix has
a repeated row or has a zero row.

Here, however, we insist in Definition 3.1 that the xi and yj correspond to distinct
extreme rays of \scrK and \scrK \ast . This definition, however, is the natural generalization of
the most common notion of slack matrix for polytopes and is more natural in the
context of this paper. It coincides with the definitions used in [53, 25]. In particular,
no two rows of a slack matrix can have the same pattern of zeros since it would imply
that different extreme rays of \scrK are orthogonal to the exact same extreme rays of \scrK \ast .
In addition, since \scrK is assumed to be pointed, a row of zeros would imply that some
extreme ray is orthogonal to \scrK \ast , but \scrK \ast \bot = ( - \scrK ) \cap \scrK , which is \{ 0\} by assumption.
Analogously, since \scrK is full-dimensional, no columns of zeros are possible, since it
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1100 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

would imply that some extreme ray of \scrK \ast is orthogonal to \scrK . In summary, the
assumptions we make in Definition 3.1 will be helpful to avoid trivial cases arising
from redundancies in the slack matrix.

In Definition 3.1, we did not specify the inner product used when constructing
slack matrices. We will show in the next proposition that this is not an issue and that
linearly isomorphic cones have the same set of slack matrices.

Proposition 3.3 (invariance of slack matrices). Let \scrK \subseteq \BbbR d be a pointed full-
dimensional polyhedral cone. The following items hold.

(i) \scrS (\scrK ) does not depend on the choice of inner product in Definition 3.1.
(ii) If \scrK is linearly isomorphic to \scrK \prime , then \scrS (\scrK ) = \scrS (\scrK \prime ).

Proof. (i) A quick proof of this item can be obtained by observing that elements

in \scrK \ast correspond to the linear functionals (i.e., elements in the dual space of \BbbR d) that
are nonnegative over \scrK . This shows that there is no dependency on the inner product
in Definition 3.1 and different inner products merely correspond to selecting different
representatives to each linear functional.

For completeness, here is also a detailed proof. Let M \in \scrS (\scrK ) as in Definition 3.1
and letA be the symmetric positive definite matrix of the corresponding inner product.
In view of (2.4), the generators of the extreme rays of \scrK \ast can be chosen to be of the
form \{ A - 1\^y1, . . .A

 - 1\^ym\} , where the \^yi generate the extreme rays of \scrK \ast 
Euc (the dual

cone with respect to the Euclidean inner product) and yi = A - 1\^yi. Therefore, the
entries of M satisfy

Mij = \langle xi, yj\rangle = xT
i A(A - 1\^yj) = xT

i \^yj ,

which does not depend on the particular choice of the inner product.

(ii) Suppose that \scrK =A\scrK \prime holds for some bijective linear map A. From (2.3)

\scrK \ast 
Euc =A - T (\scrK \prime )\ast Euc

holds. Let M \in \scrS (\scrK ). By item (i), we may consider the Euclidean inner product
without loss of generality so that we have

Mij = xT
i yj = (A\^xi)

T
\bigl( 
A - T \^yj

\bigr) 
= \^xT

i \^yj ,

where the \^xi and \^yj generate the extreme rays of \scrK \prime and (\scrK \prime )\ast Euc. So, the entries of
Mij do not depend on the particular isomorphism considered.

Next, we need the following technical lemma.

Lemma 3.4. Suppose that A,U \in \BbbR n\times d and B,V \in \BbbR d\times m are such that A,B,U,V
have rank d and AB = UV holds. Then, there exists a nonsingular matrix S \in \BbbR d\times d

such that AS =U and SV =B.

Proof. We start by noting that under the conditions of the lemma, AB has rank
d. To see this, pick nonsingular d\times d submatrices AI and BJ of A and B, obtained by
taking the d rows of A indexed by I and the d columns of B indexed by J , respectively.
Then AIBJ is nonsingular and is the submatrix of AB with columns indexed by I
and rows indexed by J .

Denote the column space of A by col(A). Since the columns of AB are linear
combinations of the columns of A, and since their column spaces have both dimen-
sion d, we must have col(A) = col(AB), and since AB = UV we also must have
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1101

col(AB) = col(U). Therefore the columns of A and the columns of U are both bases
to the same vector space, which implies that there is a nonsingular change of basis
matrix S such that AS =U .

Therefore, ASV = UV = AB, which leads to A(SV  - B) = 0. Since A has rank
d, this implies that SV =B.

We now move on to our main result on slack matrices, which is a slightly re-
fined version of [22, Lemma 5] more suitable for our purposes. The idea is that a
factorization of a slack matrix M of the form M =UV leads to a linear isomorphism
between \scrK and the cone generated by the rows of U . Furthermore, the factorization
also identifies the corresponding dual cone.

Theorem 3.5. Let \scrK \subseteq \BbbR d be a pointed full-dimensional polyhedral cone and let
M be a slack matrix of \scrK . Suppose that M =UV , where U \in \BbbR n\times d, V \in \BbbR d\times m. Then,
the following items holds.

(i) \scrK is linearly isomorphic to cone rows(U).
(ii) (cone rows(U))\ast Euc = cone cols(V ).

Proof. For simplicity, let \scrK \prime := cone rows(U) and \^\scrK := cone cols(V ).
Since M is a slack matrix of \scrK , there exists A \in \BbbR n\times d,B \in \BbbR d\times m, such that

AB =M and the rows of A correspond to the extreme rays of \scrK and the columns of
B correspond to the extreme rays of \scrK \ast 

Euc.
Since AB = UV , by Lemma 3.4 there exists a nonsingular S \in \BbbR d\times d such that

AS = U and SV =B. This implies that ST\scrK =\scrK \prime , which proves item (i) and, using
(2.3), also leads to

\scrK \prime \ast 
Euc = S - 1\scrK \ast 

Euc.(3.1)

Since SV =B, we have that S maps the cone generated by the columns of V (i.e., \^\scrK )
to the cone generated by the columns of B (i.e., \scrK \ast 

Euc). That is,

S \^\scrK =\scrK \ast 
Euc.(3.2)

From (3.1) and (3.2), we conclude that \scrK \prime \ast 
Euc = \^\scrK , which concludes the proof of

item (ii).

3.2. Self-dual cones and PSD slacks. We now present a characterization of
self-dual polyhedral cones: they are exactly the polyhedral cones that have a PSD
slack. Furthermore, if at least one slack is PSD, all of them can be made PSD by
exchanging rows and rescaling columns if necessary.

Theorem 3.6. Let \scrK \subseteq \BbbR d be a pointed full-dimensional polyhedral cone. The
following conditions are equivalent.

(i) There exists an inner product under which \scrK =\scrK \ast .
(ii) \scrK is linearly isomorphic to a cone \scrK \prime \subseteq \BbbR d satisfying \scrK \prime \ast 

Euc =\scrK \prime .
(iii) Every slack matrix M \in \scrS (\scrK ) is either PSD or there exists a permutation

matrix P and a positive diagonal matrix D such that PMD is PSD.
(iv) There exists M \in \scrS (\scrK ) that is PSD.

Proof. (i)\Rightarrow (ii) By Proposition 2.2, there exists a positive definite matrix A

such that A\scrK = \scrK \ast 
Euc. Since A is positive definite, there exists a positive definite B

such that B2 =A. Let \scrK \prime :=B\scrK . Then, from (2.3) we obtain (\scrK \prime )\ast Euc =B - 1(\scrK \ast 
Euc) =

B - 1(B2\scrK ) =\scrK \prime .

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/0

8/
24

 to
 1

33
.2

02
.2

11
.1

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



1102 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

(ii)\Rightarrow (i) By assumption, there exists B such that B\scrK = \scrK \prime and (\scrK \prime )\ast Euc = \scrK \prime .

Therefore, from (2.3), we obtain B - T (\scrK \ast 
Euc) = (\scrK \prime )\ast Euc = \scrK \prime = B\scrK . That is, \scrK \ast 

Euc =
BTB\scrK , so by Proposition 2.2, there exists an inner product under which \scrK =\scrK \ast .

(ii)\Rightarrow (iii) By Proposition 3.3, \scrS (\scrK ) = \scrS (\scrK \prime ) and we can consider that the slack

matrices are constructed with, say, the Euclidean inner product. Let n be the number
of extreme rays of \scrK \prime . So,

M =XY,(3.3)

where X \in \BbbR n\times d, Y \in \BbbR d\times n, the rows of X generate the extreme rays of \scrK \prime , and the
columns of Y generate the extreme rays of \scrK \prime \ast 

Euc.
Since \scrK \prime \ast 

Euc = \scrK \prime , we can permute the rows of X such that the ith row of X
generates the same extreme ray of \scrK \prime as the ith column of Y . That is, there exists a
permutation matrix P and a diagonal matrix D with positive entries, such that

(PX)T = Y D.(3.4)

Then, (3.3) and (3.4) imply that PM = (PX)(PX)TD - 1. Therefore, PMD, which
is obtained from M through exchanging rows and rescaling columns, is a symmetric
positive semidefinite matrix.

(iii)\Rightarrow (iv) This follows because exchanging rows and rescaling columns of any M \in 
\scrS (\scrK ) still leads to a matrix belonging to \scrS (\scrK ).

(iv)\Rightarrow (ii) Let n be the number of extreme rays of \scrK and letM \in \scrS (\scrK ) be PSD. Since

M is a slack matrix of a pointed d-dimensional cone, M has rank d (see [22, Lemma
13]). Therefore, there exists a rank d matrix X \in \BbbR n\times d such that M = XXT . Let
\scrK \prime = cone rows(X), i.e., the cone in \BbbR d generated by the rows of X. By Theorem 3.5,
\scrK is linearly isomorphic to \scrK \prime and \scrK \prime \ast 

Euc =\scrK \prime .

3.3. Slices of polyhedral cones and negatively self-polar polytopes. Un-
til now we have focused our attention on cones, with particular emphasis on polyhedral
cones. However, our results have ``dehomogenized"" versions that apply to convex bod-
ies. In particular, we can adapt them to polytopes. The right version of self-duality
we need in order to do this translation is negative self-polarity .

Let \scrV be a finite-dimensional Euclidean space equipped with some inner product
\langle \cdot , \cdot \rangle . Let C \subseteq \scrV be a full-dimensional compact convex set such that 0 \in riC, where
riC indicates the relative interior of C. Then, the polar C\circ is the set

C\circ := \{ y \in \scrV | \langle x, y\rangle \leq 1 \forall x\in C\} (3.5)

and C\circ is also a full-dimensional compact convex such that 0 \in riC\circ and C\circ \circ = C,
e.g., [46, Corollary 14.5.1]. Analogously, we say that C is negatively self-polar if there
exists an inner product under which C = - C\circ .

Negatively self-polar polytopes are a very interesting class of polytopes, with deep
connections to several areas of mathematics. Their study goes back to seminal works
of Lov\'asz [42] and Gr\"unbaum [30] and are an integral part of a more general body of
work on self-duality of polytopes. In [34] one can find a modern survey of the area
from this perspective that revisits many of the results from [6]. In order to translate
our previous results, one needs to adapt some of the definitions to this context. Let
P \subset \BbbR d be a full-dimensional polytope with extreme points \{ x1, . . . , xn\} . The facets
of P are cut out by linear inequalities lj(x) = bj  - \langle x, yj\rangle for some bi \in \BbbR and yj \in \BbbR d.
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1103

Then, analogously to Definition 3.1, we can define a slack matrix of P as the matrix
S(P ) such that

Mij = bj  - \langle xi, yj\rangle 

and define \scrS (P ) as the set of slack matrices of P . We note that if we fix M \in \scrS (P ),
every other matrix \scrS (P ) is obtained by permuting the rows or the columns of M and
scaling the columns by positive scalars. It can be seen that \scrS (P ) uniquely defines the
polytope P up to affine transformations (see [23] for more on this topic). Note that
if the origin is in the interior of P , we might choose the bj to be 1 and yj to be the
extreme points of the polar polytope P \circ .

Next, suppose that \scrV \subseteq \BbbR d+1 such that dim\scrV = d and let w \in \scrV \bot with \langle w,w\rangle = 1.
Let P \subseteq \scrV be a d-dimensional polytope with zero on the interior, with extreme points
\{ x1, . . . , xn\} . Let \scrK \subseteq \BbbR d+1 be the closed convex cone generated by \{ w\} +P , that is,

\scrK := \{ \alpha w+ \alpha x | x\in P,\alpha \geq 0\} .

Then \scrK \ast is the closed convex cone generated by \{ w\}  - P \circ , where P \circ is computed
with respect to \scrV as in (3.5).1 In particular, if P is negatively self-polar, with respect
to the inner product of \BbbR d+1 restricted to \scrV , then \scrK is self-dual. Furthermore, since
the extreme rays of \scrK and \scrK \ast are generated by the w + xi and w  - yj , respectively,
where \{ y1, . . . , ym\} are the extreme points of P \circ , we have

\scrS (P )\subseteq \scrS (\scrK ).(3.6)

Another important concept when dealing with polytopes is that of projective trans-
formations. Those are maps \varphi :\BbbR d \rightarrow \BbbR d defined by

x \mapsto \rightarrow Ax+ b

aTx+ \beta 
,

where A\in \BbbR d\times d, a, b\in \BbbR d, and \beta \in \BbbR and

B :=

\biggl( 
A b
aT \beta 

\biggr) 
is nonsingular. Another way of thinking of the map is simply the composition of the
natural inclusion \BbbR d \rightarrow \{ 1\} \times \BbbR d, with the linear isomorphism x \mapsto \rightarrow Bx and then with
the perspective transformation \BbbR d+1 \rightarrow \BbbR d that takes (x0, x) to x

x0
. When applied

to a polytope P , the image \varphi (P ) is therefore obtained by applying B to the cone \scrK 
generated by \{ 1\} \times P and then slicing B(\scrK ) with the plane defined by setting the first
coordinate to 1. We will say that two polytopes P and Q are projectively equivalent
if there exists a projective transformation \varphi such that \varphi (P ) =Q.

Under this setting, it turns out that if P and Q are projectively equivalent, then
S(P ) and S(Q) are the same up to scaling rows by positive scalars, since by the above
interpretation of \varphi they are slack matrices of \scrK and B(\scrK ) which have the same set of
slack matrices by item (ii) of Proposition 3.3.

This gives us a tool to translate Theorem 3.6 to the language of polytopes.

1Here are a few details. Let z \in \scrK \ast and \pi denote the orthogonal projection onto \{ w\} \bot , so
that z = \pi (z) + \langle z,w\rangle w and \langle z,w\rangle \geq 0 (since w \in \scrK \ast ). From z \in \scrK \ast , it can be verified that
 - \pi (z)/\langle z,w\rangle \in P \circ if \langle z,w\rangle > 0. If \langle z,w\rangle = 0, then the assumption that P is full-dimensional in \scrV 
and 0\in riP implies that \pi (z) = 0, so that z = 0.
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1104 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

Theorem 3.7. Let P \subseteq \BbbR d be a full-dimensional polytope with 0 in its relative
interior. Then, the following items are equivalent.

(i) P is projectively equivalent to a polytope that is negatively self-polar with
respect to some inner product.

(ii) P is projectively equivalent to a polytope that is negatively self-polar with
respect to the Euclidean inner product.

(iii) P has a PSD slack.

Proof. (ii)\Rightarrow (i) This implication is straightforward.

(i)\Rightarrow (iii) If Q is a negatively self-polar polytope, then, letting X be the matrix

that has the extreme points of Q in its rows and A be the matrix of the underlying
inner product, M = [1 X] ( 1 0

0 A ) [1 X]T is a PSD slack for Q. If Q is projectively
equivalent to P , there is some positive diagonal matrix D such that DM \in \scrS (P ). But
then DMD \in \scrS (P ) is a PSD matrix.

(iii)\Rightarrow (ii) Suppose M is a PSD slack for P . Then, M is also a PSD slack for the

cone \scrK in \BbbR d+1 generated by 1\times P (see (3.6)). By Theorem 3.6, there exists a linear
isomorphism B sending \scrK to a cone \scrK \prime that is self-dual with respect to the Euclidean
inner product. By composing B with an orthogonal transformation we may assume
that \{ 1\} \times \{ 0\} is in the interior of \scrK \prime , which means that the slice of \scrK \prime by the plane
where the first coordinate is one is a compact polytope Q and will be negatively self-
polar with respect to the Euclidean product after projecting onto \BbbR d along the last d
coordinates. Moreover, as observed before, taking the cone over P , applying a linear
transformation, and then slicing with this plane is the same as making a projective
transformation, so Q is projectively equivalent to P .

4. Extreme rays of the DNN cone and completely positive semidefinite
matrices. From Theorems 3.6 and 3.7, the slack matrices of self-dual polyhedral
cones and negatively self-polar polytopes are either PSD or can be made PSD after
exchanging rows and rescaling columns. They are also nonnegative so they are in fact
doubly nonnegative matrices. In this section, we explore the connections between PSD
slacks, doubly nonnegative matrices and completely positive semidefinite matrices.

4.1. Irreducible self-dual polyhedra and extreme rays of the DNN cone.
First, we will prove that PSD slacks of irreducible self-dual polyhedral cones are
extreme rays of the doubly nonnegative cone. We need a few preliminary results and
discussions.

Irreducible cones and slack matrices. We recall that a closed convex cone
\scrK \subseteq \BbbR d is said to be irreducible (e.g., [28]) if it is not possible to write \scrK as \scrK 1 +\scrK 2,
where \scrK 1 and \scrK 2 are nonzero closed convex cones satisfying span (\scrK 1)\cap span (\scrK 2) =
\{ 0\} . Otherwise, \scrK is said to be reducible and we write \scrK =\scrK 1\oplus \scrK 2. Irreducible cones
are also called indecomposable (see [39, 6]).

Irreducibility is a concept that does not depend on the underlying inner product.
Accordingly, if we fix some inner product, the cones \scrK 1 and \scrK 2 are not necessarily
orthogonal. However, the situation gets considerably simpler when the cones involved
are polyhedral and self-dual; see also [4, section 3] for a related discussion.

Lemma 4.1. Suppose \scrK \subseteq \BbbR d is a self-dual polyhedral cone under some inner
product and that \scrK = \scrK 1 \oplus \scrK 2. Then, \scrK 1 = \scrK \cap \scrK \bot 

2 . In particular, \scrK 1 and \scrK 2 are
orthogonal under the same inner product.
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1105

Proof. In view of (2.2) and the self-duality of \scrK , we have \scrK \cap  - \scrK = \scrK \bot . So if
x \in \scrK \bot , then x \in \scrK , which forces x to be zero. Therefore, \scrK \cap  - \scrK = \{ 0\} and \scrK 
must be pointed. With that, \scrK 1 and \scrK 2 are, in fact, faces of \scrK . Let x\in \scrK \cap \scrK \bot 

2 and
d1 := dim\scrK 1 and d2 := dim\scrK 2, so that d1+d2 = d holds. Then, since \scrK =\scrK 1\oplus \scrK 2, we
have x= k1 + k2, with k1 \in \scrK 1 and k2 \in \scrK 2. Since x\in \scrK \bot 

2 , we have \langle x,k2\rangle = 0. Then,
because \scrK is self-dual, \langle k1, k2\rangle \geq 0 holds, so we have k2 = 0. Therefore, \scrK \cap \scrK \bot 

2 \subseteq \scrK 1.
Because \scrK is polyhedral, dim(\scrK \cap \scrK \bot 

2 ) = d  - d2 = d1 holds (e.g., [49, Theorem 3]).
Since \scrK 1 and \scrK \cap \scrK \bot 

2 are both faces of \scrK , this implies that \scrK 1 =\scrK \cap \scrK \bot 
2 .

We recall that a matrix A is said to be irreducible if there is no permutation
matrix P such that PAPT is in block upper triangular form, i.e., PAPT = (E F

0 G ).
If A is symmetric, then F = 0, so for symmetric matrices irreducibility means that
PAPT is never block diagonal for any permutation matrix P .

Let A \in \scrS n and consider the support graph G(A) of A, which is constructed as
follows. Let the vertex set be V := \{ 1, . . . , n\} and (i, j) belongs to the edge set if and
only if Aij \not = 0 and i \not = j. Then, the following fact is well-known.

Lemma 4.2 (e.g., [9, Chapter 2], [51, section 1.4]). A \in \scrS n is irreducible if and
only if G(A) is connected.

For self-dual polyhedral cones, using Lemma 4.2 we can connect the notion of
cone irreducibility with matrix irreducibility.

Proposition 4.3. Let \scrK \subseteq \BbbR d be a self-dual polyhedral cone and let A \in \scrS (\scrK )
be a symmetric positive semidefinite slack matrix of \scrK . Then, \scrK is irreducible if and
only if A is irreducible.

Proof. By item (ii) of Theorem 3.6, \scrK is linearly isomorphic to a convex cone
\scrK \prime that is self-dual with respect to the Euclidean inner product. By item (ii) of
Proposition 3.3, A \in \scrS (\scrK \prime ). Therefore, there exists a n \times d matrix X such that its
rows generate the extreme rays of \scrK \prime , so that rank(X) = d and

A=XXT .(4.1)

Irreducibility is preserved under linear isomorphisms, so \scrK is irreducible if and only
if \scrK \prime is irreducible.

With that in mind, first we prove that if A is reducible, then \scrK \prime is reducible. If A
is reducible, then there exists some permutation matrix P such that PAPT is block
diagonal. By (4.1), we have

PAPT = PX(XP )T .

Therefore, PAPT being block diagonal means that the extreme rays of \scrK \prime can be
rearranged in two sets \{ u1, . . . , u\ell 1\} \subseteq \BbbR d, \{ v1, . . . , v\ell 2\} \subseteq \BbbR d in such a way that ui

and vj are orthogonal for all i, j. Then, if \scrK 1 is the cone generated by \{ u1, . . . , u\ell 1\} 
and \scrK 2 is the cone generated by \{ v1, . . . , v\ell 2\} \subseteq \BbbR d, we have \scrK \prime =\scrK 1 \oplus \scrK 2.

Conversely, suppose that \scrK \prime is reducible. Then, \scrK \prime =\scrK 1\oplus \scrK 2 with \scrK 1\cap \scrK 2 = \{ 0\} 
and \scrK 1, \scrK 2 are nonzero cones with dimension d1 and d2, respectively. We also have
d1+d2 = d and by Lemma 4.1, \scrK 1 and \scrK 2 are orthogonal with respect to the Euclidean
inner product.

Let n1 and n2 be the number of extreme rays of \scrK 1 and \scrK 2 and let P be permu-
tation matrix such that the first n1 rows of PX correspond to the extreme rays of \scrK 1

and the last n2 rows correspond to the extreme rays of \scrK 2. Then,

PAPT = (PX)(PX)T .
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1106 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

Because of the orthogonality between \scrK 1 and \scrK 2, PAPT is block diagonal, so A is
reducible.

Extreme rays of the doubly nonnegative matrices. Next, we review a char-
acterization of the extreme rays of the doubly nonnegative matrices given in [31].

Theorem 4.4 ([31, Theorem 2.1]). Suppose A is a doubly nonnegative matrix of
rank k\geq 1 and A=XXT for some n\times k matrix X. Define

\scrW 1 := \{ XQXT | Q\in \scrS k\} , \scrW 2 := \{ Y | Yij = 0 if Aij = 0\} .

Then, A generates an extreme ray of DNNn if and only if \scrW 1 \cap \scrW 2 = \{ \lambda A | \lambda \in \BbbR \} .
Theorem 4.4 will be one of the main tools we will use, so we need to establish a

few results that make it easier to reason about the sets \scrW 1 and \scrW 2 appearing therein.
In what follows, for v \in \BbbR d we define

zeroes(v) := \{ i | vi = 0\} .

Lemma 4.5. Let \scrK \subseteq \BbbR d be a pointed full-dimensional polyhedral cone and let
A \in \scrS (\scrK ). Denote the ith row of A by ai. Suppose that v \not = 0 belongs to the span of
the rows of A. If for some i we have

zeroes(ai)\subseteq zeroes(v),

then v is a nonzero multiple of ai.

Proof. We have

v=

n\sum 
j=1

\alpha ja
j .

By virtue of A being a slack matrix, we can write A = UW where the rows of U
generate the extreme rays of \scrK and the columns of W generate the extreme rays of
\scrK \ast 

Euc, where \scrK \ast 
Euc is the dual cone of \scrK with respect to the usual Euclidean inner

product.
Denote the rows of U by uj and the columns of W by wj . Let z :=

\sum n
j=1\alpha ju

j .

Since A=UW , we have aj = ujW for every j. This implies that v= zW and the jth
component of v satisfies

vj = vej = zWej = zwj ,(4.2)

where ej is the jth (column) unit vector. Just to avoid confusion, we remark that
we are seeing v and z as row vectors, so vej and zwj are indeed scalars. Then, the
condition zeroes(ai) \subseteq zeroes(v) together with (4.2) implies that z is orthogonal to
every extreme ray of \scrK \ast 

Euc that is orthogonal to ui (and potentially more).
We recall that every extreme ray of \scrK is exposed by a facet of \scrK \ast 

Euc and a facet
of \scrK \ast 

Euc is a (d - 1)-dimensional polyhedral cone, e.g., [49, Theorems 2 and 3]. So z is
also orthogonal to (at least) (d - 1) linearly independent extreme rays of \scrK \ast 

Euc among
the ones that are orthogonal to ui. This means that z is in the space spanned by ui,
that is, z is a multiple of ui. Since v is nonzero, z must be nonzero as well, so, in fact,
z = \beta ui, where \beta \not = 0. Since v= zW , we obtain v= \beta ai.

Lemma 4.6. Let A be a n\times n slack matrix such that A = XXT , where X is a
n\times d matrix with rank(X) = d. Define

\scrW 1 := \{ XQXT | Q\in \scrS d\} , \scrW 2 := \{ Y | Yij = 0 if Aij = 0\} .

If B \in \scrW 1 \cap \scrW 2, then the ith row of B is a multiple of the ith row of A.
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1107

Proof. By the definition of \scrW 1, the space spanned by the columns of B is con-
tained in the space spanned by the columns of X. Now, the space spanned by the
columns of A is also contained in the space spanned by the columns of X, but since
rank(X) = rank(A) = d, these two spaces are in fact equal. So, every column of B is
spanned by the columns of A. And since A and B are symmetric the same is true for
the rows.

Finally, denote the ith row of A and B by ai and bi, respectively. Since B \in \scrW 2,
we have zeroes(ai)\subseteq zeroes(bi), so Lemma 4.5 tells us that bi is a multiple of ai.

Piecing everything together.
Theorem 4.7. Let A\in \scrS n be a positive semidefinite slack matrix associated to a

self-dual irreducible polyhedral cone \scrK \subseteq \BbbR d. Then, A is an extreme ray of DNNn.

Proof. By item (ii) of Theorem 3.6, \scrK is linearly isomorphic to a convex cone
\scrK \prime that is self-dual with respect to the Euclidean inner product. By item (ii) of
Proposition 3.3, A \in \scrS (\scrK \prime ). Therefore, there exists a n \times d matrix X such that its
rows generate the extreme rays of \scrK \prime , so that A=XXT and rank(X) = d. Consider
the sets \scrW 1 and \scrW 2 of Lemma 4.6. Every B \in \scrW 1 \cap \scrW 2 is such that the ith row of B
is a multiple of the ith row of A. That is, bi = \lambda ia

i, where ai and bi are the ith rows
of A and B, respectively. Since A and B are symmetric,

Bji =Bij = \lambda iAij = \lambda jAji = \lambda jAij .

If Aij \not = 0, we must have \lambda i = \lambda j . Now, consider the support graph G(A). Since
Aij \not = 0 implies \lambda i = \lambda j , we have that \lambda k must be constant for all indices that
belong to the same connected component of G(A). However, since \scrK is irreducible
and irreducibility is preserved under linear isomorphism, \scrK \prime is irreducible. Then,
A is irreducible by Proposition 4.3, so G(A) has a single connected component, by
Lemma 4.2. We conclude that all the \lambda i's must be the same and B = \lambda A for some
\lambda \in \BbbR . By Theorem 4.4, this implies that A is an extreme ray of DNNn.

Next, we discuss Theorem 4.7 in view of what is known about the extreme rays of
DNNn. The fact is that there are still several gaps on our knowledge of the extreme
rays of the doubly nonnegative cone. And, indeed, it is mentioned in [8] that the
extreme rays of DNNn are not yet completely understood.

For n\leq 4, we have DNNn =CPn and the extreme rays of DNNn are exactly the
rank 1 matrices in DNNn. For n = 5, [31, Theorem 3.1] implies that the possible
ranks of extreme rays of DNN5 are either 1 or 3 and [31, Theorem 3.2] tells us that
A \in DNN5 with rank 3 is an extreme ray if and only if the graph G(A) is a cycle of
length 5. Here is an example of one such matrix.

Example 4.8 (Self-dual cone over a pentagon). We start with a self-dual cone \scrK 
constructed over a regular pentagon, as described in [6, p. 152]. Its extreme rays are
generated by \Bigl( 

cos(2\pi i/5), sin(2\pi i/5),
\sqrt{} 
 - cos(4\pi /5)

\Bigr) 
, i= 0, . . . ,4.

Letting U be the matrix that has those vectors in its row, we obtain the following
slack matrix

M =UUT =

\left(       
1 + cos

\bigl( 
\pi 
5

\bigr) \surd 
5
2 0 0

\surd 
5
2\surd 

5
2 1 + cos

\bigl( 
\pi 
5

\bigr) \surd 
5
2 0 0

0
\surd 
5
2 1 + cos

\bigl( 
\pi 
5

\bigr) \surd 
5
2 0

0 0
\surd 
5
2 1 + cos

\bigl( 
\pi 
5

\bigr) \surd 
5
2\surd 

5
2 0 0

\surd 
5
2 1 + cos

\bigl( 
\pi 
5

\bigr) 

\right)       .
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1108 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

G(M) is a 5-cycle and therefore connected, so \scrK is irreducible by Proposition 4.3.
By Theorem 4.7, M is an extreme ray of DNN5.

In fact, all the non completely positive extreme rays of DNN5 are generated by
slack matrices of self-dual cones over a pentagon. In order to make this claim precise,
we state the following result, which follows from [22, Theorem 24].2

Theorem 4.9. Suppose that M \in \BbbR n\times n is a rank d nonnegative matrix and that
there exists a slack matrix N of a pointed full-dimensional polyhedral cone \scrK \subseteq \BbbR d

such that Mij \not = 0 \leftrightarrow Nij \not = 0. Then, M is also the slack matrix of a pointed full-
dimensional polyhedral cone in \BbbR d.

We can now prove the following curious characterization of the extreme rays of
DNN5.

Theorem 4.10 (Characterizing the extreme rays of DNN5). Let X \in DNN5.
Then, X generates an extreme ray of DNN5 if and only if X is either rank 1 or a
slack matrix of a irreducible self-dual cone over a pentagon.

Proof. If X is rank 1 then X is an extreme ray of DNN5 since it is even an extreme
ray of \scrS n

+. If X is the slack matrix of a irreducible self-dual cone over a pentagon,
then, by Theorem 4.7, it must be an extreme ray of DNN5.

Conversely, suppose that X is an extreme ray of DNN5. By [31, Theorem 3.1],
the rank of X is either 1 or 3. If it is 1, we are done. So, suppose that the rank
of X is 3. Then, by [31, Theorem 3.2], the graph G(X) is a cycle of length 5. The
slack matrix constructed in Example 4.8 for the self-dual cone over a pentagon is also
a 5-cycle. So, permuting the rows of U in Example 4.8 if necessary, there exists a
least one slack matrix M such that Xij \not = 0 \leftrightarrow Mij \not = 0 holds. By Theorem 4.9, X
must be the slack matrix of a pointed full-dimensional polyhedral cone \scrK \subseteq \BbbR 3. Since
X is PSD and G(X) is connected, \scrK is a irreducible self-dual (with respect to some
inner product) cone with 5 extreme rays. That is, it is a cone generated by some
pentagon.

Next, we discuss Theorem 4.7 for the cases n = 6 and n = 7. For DNN6, the
possible ranks of extreme rays are 1 or 3 [31, Theorem 3.1]. We note that a 6 \times 6
rank 3 slack matrix must be the slack of a polyhedral cone in \BbbR 3 with 6 extreme rays
(which is a consequence of Theorem 3.5). However, a self-dual polyhedral cone in \BbbR 3

must have a odd number of extreme rays [6, Theorem 3]. Therefore, Theorem 4.7
gives us no extreme rays in DNN6. However, Theorem 4.7 does provides new extreme
rays for n\geq 7.

Example 4.11 (New families of extreme rays of DNN7). We have a family of 7\times 7
rank 4 matrices that are the slack matrices of self-dual polyhedral cones. This is given
by the slack matrix of the cone over a self-dual roofed triangular prism. A concrete
example is the cone generated by the seven rays

\Biggl( 
1, - 1\surd 

2
,\pm 
\sqrt{} 

3

2
,0

\Biggr) 
,
\Bigl( 
1,
\surd 
2,0,0

\Bigr) 
,

\Biggl( 
1, - 1\surd 

2
,\pm 
\sqrt{} 

3

2
, - 1

\Biggr) 
,
\Bigl( 
1,
\surd 
2,0, - 1

\Bigr) 
, (1,0,0,1)

(4.3)

2The only caveat is that the slack matrices considered in [22] may have some redundancies as
described in Remark 3.2. However, with some effort and considering that those redundancies are
reflected in the zero pattern of the matrices and N does not have such redundancies, one may
show that Theorem 4.9 indeed holds as stated considering the definition of slack matrices as in
Definition 3.1.
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1109

Fig. 1. Negatively self-polar roofed triangular prism.

which is self-dual [50, 34]. This is obtained by applying the second construction
described in the proof of [34, Theorem 4.7] to the case k= 1 to generate a negatively
self-polar polytope P \subseteq \BbbR 3. Then, proceeding as in section 3.3, the corresponding
cone in \BbbR 4 generated by 1\times P is self-dual and has the extreme rays as in (4.3). This
corresponds to the cone over the roofed triangular prism shown in Figure 1.

The slack matrix will then provide an extreme ray for the DNN7. Explicitly, the
matrix

S =

\left(          

3 0 0 3 0 0 1
0 3 0 0 3 0 1
0 0 3 0 0 3 1
3 0 0 4 1 1 0
0 3 0 1 4 1 0
0 0 3 1 1 4 0
1 1 1 0 0 0 2

\right)          
is a rank 4 extreme ray of DNN7. In fact, any matrix with the same rank and
zero pattern (up to permutations) can be guaranteed to come from a self-dual cone
combinatorially equivalent to this one, which follows from Theorem 4.9. Since the
rank of extreme rays in DNN7 is at most 5, and we have a full characterization of
the combinatorics of all self-dual polyhedral cones of dimension up to 5 with at most
seven vertices (see more details in section 5), we know this is the only new family that
our result guarantees to exist for DNN7.

Next we observe that the construction provided in [31, Lemma 3.7] does not
necessarily correspond to self-dual polyhedra. So, indeed, the family of extreme rays
coming from Theorem 4.7 seems to be distinct.

Example 4.12. In [31, Lemma 3.7] the authors explicitly construct extreme ma-
trices of the DNNn of all allowable ranks. Applying their construction for 7\times 7 rank
4 matrices we get the matrix

A=

\left(          

2 1 0 0 2 0 2
1 2 1 0 0 0 0
0 1 2 2 0 2 0
0 0 2 3 1 3 1
2 0 0 1 3 1 3
0 0 2 3 1 4 0
2 0 0 1 3 0 4

\right)          
.
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1110 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

Fig. 2. A polytope P in red included in its negative polar in yellow.

A slack matrix of a pointed full-dimensional cone \scrK \subseteq \BbbR d must have rank d and each
row must have at least d - 1 zeros, since each extreme ray of \scrK is orthogonal to a facet
of \scrK \ast , e.g., [49, Theorems 2 and 3]. Therefore, A is not a slack matrix of a polyhedral
cone of dimension 4, since there are two rows with only two zeroes.

However, one can still interpret geometrically any doubly nonnegative matrix A.
Since any such matrix of rank k can be written as A = XXT , we can think of the
k-dimensional cone generated by the rows of X, which is denoted by cone rows(X).
The nonnegativity of A is equivalent to cone rows(X) \subseteq cone rows(X)\ast . When we
have equality, we are in the scope of our previous result, and it seems plausible that
any perturbation will break the inclusion, hence we have extremality. In Figure 2 we
show a compact slice of cone rows(X). We can see that in the case of the extreme ray
that does not come from a self-dual cone, the cone and its dual (represented here by
their homogenisation) while not equal, fit tightly with many of their facets spanning
the same linear spaces.

Example 4.12 point us towards an interesting direction. Although it is not possi-
ble to generate all extreme rays via self-dual cones, we will conclude this subsection
by showing that all DNN matrices arise from slacks of self-dual cones via generalized
congruence through a nonnegative matrix. This is possible because for any pointed
full-dimensional cone \scrK satisfying \scrK \subseteq \scrK \ast 

Euc, one can ``squeeze"" a self-dual cone as
follows, see also [6, Theorem 5] for a related result.

Proposition 4.13. Let \scrK \subseteq \BbbR d (d\geq 2) be a pointed full-dimensional polyhedral
cone satisfying \scrK \subseteq \scrK \ast 

Euc. Then, there exists a self-dual polyhedral cone (with respect
to the Euclidean inner product) such that \^\scrK such that \scrK \subseteq \^\scrK \subseteq \scrK \ast 

Euc.

Proof. This result essentially follows from [34, Corollary 7.3], but we explain
the details. We recall that every pointed cone satisfies ri\scrK \cap ri\scrK \ast \not = \emptyset (e.g., [40,
Footnote 1]), so \scrK \subseteq \scrK \ast 

Euc implies that, in fact, ri\scrK \subseteq ri\scrK \ast 
Euc holds, see [46, Corollary

6.5.2].
Let w \in ri\scrK of be of norm 1 and let U \in \BbbR d\times d be any orthogonal matrix such

that Uw= (1,0, . . . ,0) and let \~\scrK :=U\scrK . In view of (2.3), \~\scrK \ast 
Euc =U - T\scrK \ast 

Euc =U\scrK \ast 
Euc.

So \~\scrK is another cone such that \~\scrK \subseteq \~\scrK \ast 
Euc. Since (1,0, . . . ,0) \in ri \~\scrK \subseteq ri \~\scrK \ast 

Euc and \~\scrK is
pointed, the slice

C := \{ (1, x)\in \BbbR \times \BbbR d - 1 | (1, x)\in \~\scrK \} 

is compact and generates \~\scrK . Then, projecting C onto \BbbR d - 1 along the last d  - 
1 coordinates we obtain a compact polyhedral set P \subseteq \BbbR d - 1, such that 1 \times P
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1111

generates \scrK . Since (1,0, \cdot \cdot \cdot ,0)\in ri \~\scrK and \~\scrK is full-dimensional, P has 0 in its interior.
Under these conditions, it can be verified that 1\times ( - P \circ ) generates \scrK \ast 

Euc, e.g., see [47,
Proposition 3.3].

Since \~\scrK \subseteq \~\scrK \ast 
Euc, 1\times P is contained in the convex cone generated by 1\times ( - P \circ ).

Therefore, P \subseteq  - P \circ . By [34, Corollary 7.3], there exists a polyhedral set Q such
that P \subseteq Q =  - Q\circ \subseteq  - P \circ . Q must be compact as well, since P \circ is compact (recall
that P \subseteq \BbbR d is full-dimensional in \BbbR d and has 0 in its interior). Let \^\scrK be the convex
cone generated by 1\times Q. Then, since Q is compact and has 0 in its interior, \^\scrK \ast 

Euc is
generated by 1\times ( - Q\circ ), so \^\scrK is self-dual and satisfies

\~\scrK \subseteq \^\scrK = \^\scrK \ast 
Euc \subseteq \~\scrK \ast 

Euc.

Therefore,

\scrK \subseteq UT \^\scrK = (UT \^\scrK )\ast Euc \subseteq \scrK \ast 
Euc,

so UT \^\scrK is a self-dual cone polyhedral sandwiched between \scrK and \scrK \ast 
Euc.

We can now prove the following.

Proposition 4.14. Let A\in DNNn have rank d. Then, there exists a slack matrix
B \in DNNm of a self-dual polyhedral cone in \BbbR d and a nonnegative matrix M \in \BbbR n\times m

such that A=MBMT .

Proof. A can be written as A = XXT , where X \in \BbbR n\times d and has rank d. Let
\scrK = cone rows(X), which is a cone in \BbbR d. Since A is nonnegative, we have \scrK \subseteq \scrK \ast 

Euc.
Furthermore, \scrK is full-dimensional since X has rank d. It must also be pointed, since
the lineality space \scrK \cap  - \scrK is equal to \scrK \ast \bot 

Euc (see (2.2)) and \scrK \ast 
Euc contains \scrK .

By Proposition 4.13, there exists a self-dual polyhedral cone \^\scrK such that \scrK \subseteq 
\^\scrK \subseteq \scrK \ast 

Euc. Let B \in DNNm be a PSD slack of \^\scrK , which exists by Theorem 3.6. We
may assume without loss of generality that the inner product under consideration is
the usual Euclidean one so that B = Y Y T for some Y \in \BbbR m\times d and the rows of Y are
the extreme rays of the cone \^\scrK .

Then, the condition \scrK \subseteq \^\scrK tells us that each row of X is a nonnegative linear
combination of rows of Y . That is, there exists a nonnegative matrix M \in \BbbR n\times m such
that MY =X. Therefore

A=MY Y TMT =MBMT .

Example 4.15. Let us revisit Example 4.12 in light of Proposition 4.14. Since the
matrix A of DNN7 presented there has rank 4, according to Proposition 4.14, there
must be some nonnegative matrix M and a slack matrix B such that A=MBMT .

That can be seen to be the case, for

B =

\left(            

2 1 0 0 2 2 0 2
1 2 1 0 0 1 0 0
0 1 2 2 0 0 2 0
0 0 2 3 1 0 3 1
2 0 0 1 12 8 4 0
2 1 0 0 8 6 2 0
0 0 2 3 4 2 4 0
2 0 0 1 0 0 0 4

\right)            
M =

\left(          

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1

4 0 0 3
4

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

\right)          
.

Graphically, this matrix B is the slack matrix of a self-dual polyhedral cone with
8 rays that lies sandwiched between the cone of the rows of X and its dual seen in
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1112 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

Fig. 3. A negatively self-polar polytope Q sandwiched between a polytope P in red included in
its negative polar in yellow.

Example 4.12. Slicing the cones as done in that example we obtain the inclusions
shown in Figure 3, where the red section of the cone of the rows is included in the
blue section of an autodual cone.

The proof of Proposition 4.13 in the paper [34] is completely constructive, so we
can actually construct these sandwiched cones explicitly, and therefore automatically
construct the matrices M and B. In practice, however, there seem to be simpler ways
of finding ad hoc contructions for simple examples of extreme rays of DNNn that are
not slacks.

4.2. Generating DNN matrices that are neither completely positive
nor completly positive semidefinite. PSD slack of self-dual polyhedral cones are
doubly nonnegative. It is natural to wonder whether those matrices are, in fact,
completely positive. Since CPn \subseteq DNNn, a necessary condition for an extreme ray of
DNNn to belong to CPn is that it must be an extreme ray of CPn as well. However,
all the extreme rays of CPn have rank 1. On the other hand, a slack matrix of a
pointed full-dimensional polyhedral cone \scrK \subseteq \BbbR d has rank d.

In view of these facts, Theorem 4.4 implies that positive semidefinite slack matri-
ces of irreducible self-dual polyhedral cones of dimension d\geq 3 are doubly nonnegative
matrices that are not completely positive. That is, if we are able to generate irreduc-
ible self-dual polyhedral cones, we can use them to construct families of noncompletely
positive matrices that are doubly nonnegative.

An interesting generalization of the completely positive cone CPn is the com-
pletely positive semidefinite cone CSn. This is the cone of all n\times n matrices M such
that there exist positive semidefinite matrices A1, . . . ,An such that Mi,j = \langle Ai,Aj\rangle for
all i, j, where \langle \cdot , \cdot \rangle is the Frobenius inner product, which is given by \langle X,Y \rangle = tr(XY ),
for X,Y \in \scrS n. Note that there is no prescription on the size of the Ai.

The basic properties of this cone can be found in [36], with other relevant work
in [29, 45, 1, 21]. This is a notoriously hard cone to handle that plays a role in
some quantum games and quantum information literature. We have the following
inclusions:

CPn \subseteq CSn \subseteq DNNn.

Furthermore, for n\geq 5 the inclusions are strict [36, 21].
The remainder of this subsection will be focused on proving that nondiagonal

PSD slacks of polyhedral cones are also not completely positive semidefinite, thus
significantly strengthening our previous observation that the PSD slacks of irreducible
polyhedral cones are are not completely positive. In order to do so, we will need a
few preliminary results.
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1113

Completely positive semidefinite slacks and slices of the PSD cone.
Our analysis starts with the observation that if a PSD slack S of a self-dual cone \scrK is
completely positive semidefinite, then the matrices that appear in the decomposition
of S can be used to construct a slice of the PSD cone that is isomorphic to \scrK . In
what follows we say that a (not necessarily full-dimensional) cone \scrK is self-dual on its
span if there is some inner product under which \scrK = (\scrK \ast )\cap span\scrK .

Lemma 4.16. Let S be a PSD slack matrix of a self-dual polyhedral cone \scrK \subseteq \BbbR d.
Suppose that S is completely positive semidefinite and let A1, . . . ,An \in \scrS k

+ be such that
Sij = \langle Ai,Aj\rangle holds for all i, j. Let \=\scrK be the convex cone generated by the Ai, i.e.,
\=\scrK = \{ 

\sum n
i=1\alpha iAi | \alpha i \geq 0 for all i= 1, . . . , n\} . Let H be the span of the Ai. Then, the

following statements hold.
(i) \scrK and \=\scrK are linearly isomorphic.
(ii) \=\scrK is self-dual on its span with respect to the Frobenius inner product.
(iii) \=\scrK = \scrS k

+ \cap H holds.

Proof. In view of Theorem 3.6, \scrK is isomorphic to a polyhedral cone that is
self-dual with respect to the usual Euclidean inner product. Isomorphic cones share
the same slack matrices (Proposition 3.3), so for the purposes of this proof, we may
assume without loss of generality that \scrK is self-dual with respect to the Euclidean
inner product and S = V V T , where each row of V \in \BbbR n\times d generates a distinct extreme
ray of \scrK . Denote the ith row of V by vi. We define the map \varphi :\BbbR d \rightarrow H such that

\varphi 

\Biggl( 
n\sum 

i=1

\alpha iv
i

\Biggr) 
:=

n\sum 
i=1

\alpha iAi.(4.4)

This map is well-defined. In fact, if
\sum n

i=1\alpha iv
i =
\sum n

i=1 \beta iv
i, this means (\alpha  - \beta )V = 0.

Multiplying by V T we obtain (\alpha  - \beta )S = 0. Since Sij = \langle Ai,Aj\rangle , this translates to\Biggl\langle 
n\sum 

i=1

(\alpha i  - \beta i)Ai,Aj

\Biggr\rangle 
= 0 \forall j.

Since the Aj span H, this means \varphi (\alpha V ) - \varphi (\beta V ) =
\sum n

i=1(\alpha i - \beta i)Ai = 0 so \varphi is indeed
well-defined. Next, we verify that \varphi is injective and, hence, a bijection to its image H.
Just note that \varphi (\alpha V ) = 0 means \langle 

\sum 
\alpha iAi,Aj\rangle = 0 for all j, hence \langle 

\sum 
\alpha iv

i, vj\rangle = 0,
and since the vj span \BbbR d we have

\sum 
\alpha iv

i = 0. We conclude that \varphi (\scrK ) = \=\scrK and \scrK is
linearly isomorphic to \=\scrK , which proves item (i).

We move on to item (ii). The span of \=\scrK is H, so in order to show that \=\scrK is
self-dual on its span, we will check that \=\scrK = \=\scrK \ast \cap H, where \=\scrK \ast is computed with
respect to the Frobenius inner product.

The Ai are PSD matrices so \langle Ai,Aj\rangle \geq 0 holds for all i, j. This leads to the
inclusion \=\scrK \subseteq \=\scrK \ast \cap H. Conversely, let B \in \=\scrK \ast \cap H. In particular, B is a linear
combination of the Ai, i.e., B =

\sum n
i=1\alpha iAi. Now, let b :=

\sum n
i=1\alpha iv

i. We recall that
S = V V T and Sij = \langle Ai,Aj\rangle = \langle vi, vj\rangle . Therefore, since B \in \=\scrK \ast \cap H, we have b \in \scrK \ast .
Since \scrK is self-dual, we have b\in \scrK and there are nonnegative \beta i's such that

b=

n\sum 
i=1

\alpha iv
i =

n\sum 
i=1

\beta iv
i.

By the definition of \varphi (see (4.4)), we have \varphi (b) =B and \varphi (vi) =Ai for all i, so

B =

n\sum 
i=1

\alpha iA
i =

n\sum 
i=1

\beta iA
i,

which shows that B \in \=\scrK and concludes item (ii).
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1114 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

For item (iii), we first observe that since the Ai are PSD matrices, we have the
inclusion \=\scrK \subseteq \scrS k

+ \cap H. Conversely, if X \in \scrS k
+ \cap H, since X and the Ai are PSD we

have \langle X,Ai\rangle \geq 0 for every i, which implies that X \in \=\scrK \ast \cap H. By item (ii), \=\scrK \ast \cap H = \=\scrK ,
so X \in \=\scrK .

Therefore, in order for a PSD slack matrix to be completely positive semidefi-
nite, the underlying cone must be linearly isomorphic to a linear slice of a positive
semidefinite cone, self-dual with respect to its span. Note that every polyhedral cone
can be written as a linear slice of a positive semidefinite cone in many different ways,
so the imposition of self-duality with respect to the matrix inner product is a key
requirement. For more on the question of deciding whether a slice of the positive
semidefinite cone is polyhedral see, for instance, [11].

Since \scrS k
+ is self-dual, Lemma 4.16 is related to [6, Theorem 4], which characterizes

codimension one self-dual slices of a self-dual cone \scrK as those for which \scrK \cap H = \pi H(\scrK ),
where \pi H is the orthogonal projection onto H with respect to the underlying inner
product. In fact, codimension 1 does not really matter, and we can get rid of it. For
the sake of self-containment, below we show the generalized version, but it also follows
from standard results such as [46, Corollary 16.3.2].

Theorem 4.17. Let \scrK \subseteq \BbbR d be a self-dual cone with respect to some inner product
\langle \cdot , \cdot \rangle and let H \subseteq \BbbR d be a subspace. Then, the following statements are equivalent.

(i) The span of \scrK \cap H is H and \scrK \cap H is self-dual on its span with respect to
\langle \cdot , \cdot \rangle .

(ii) \pi H(\scrK ) =\scrK \cap H, where the orthogonal projection is computed with respect to
\langle \cdot , \cdot \rangle .

Proof. (i)\Rightarrow (ii) Since \pi H(\scrK \cap H) = \scrK \cap H we obtain the inclusion \scrK \cap H \subseteq 
\pi H(\scrK ). Conversely, suppose that y is such that y= \pi H(x) for some x\in \scrK . For every
z \in \scrK \cap H we have \langle z, y\rangle = \langle z,x\rangle , and that is nonnegative by the self-duality of \scrK .
Therefore, y belongs to the dual of \scrK \cap H and to H (which is the span of \scrK \cap H), and
hence belongs to \scrK \cap H since \scrK \cap H is self-dual on its span.

(ii)\Rightarrow (i) First, we observe that \scrK \bot \subseteq \scrK \ast always holds, so the condition \scrK =\scrK \ast 

implies that span\scrK = \BbbR d. Then, since \scrK \cap H = \pi H(\scrK ) and \pi H is a linear map, we
have span (\scrK \cap H) = \pi H(span\scrK ) = \pi H(\BbbR d) =H.

Next, the fact that \scrK \cap H is contained in its dual follows from the self-duality of \scrK ,
so we only have to prove that (\scrK \cap H)\ast \cap H \subseteq \scrK \cap H. So, suppose that z \in (\scrK \cap H)\ast \cap H
and let x\in \scrK . Then, since \scrK \cap H = \pi H(\scrK ),

0\leq \langle z,\pi H(x)\rangle = \langle \pi H(z), x\rangle = \langle z,x\rangle ,

which shows that z \in \scrK \ast and, therefore, z \in \scrK by the self-duality of \scrK . In conclusion,
z \in \scrK \cap H as intended.

Projectional exposedness. Next, we need a detour on the notion of projectional
exposedness. This notion has its origin in [12] and was studied in [7, 44, 48, 40]. A
cone \scrK is said to be projectionally exposed if for every face F of \scrK , there exists a linear
projection PF , i.e., a linear map (not necessarily self-adjoint) satisfying P 2

F = PF such
that PF\scrK = F . If all those projections can be taken to be orthogonal, then the cone is
said to be orthogonally projectionally exposed (o.p.-exposed). Examples of such cones
include all symmetric cones [41, Proposition 33] of which \BbbR k

+ and \scrS k
+ are particular

examples.
Projectionally exposed cones are not only facially exposed [48, Corollary 4.4]

but also satisfy a condition called amenability [41, Proposition 9]. Amenability and
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1115

projectional exposedness coincide for cones of dimension four or less [40, Corollary 6.4]
and, as of this writing, it is an open problem to exhibit an amenable cone that is not
projectionally exposed (see [40]).

In any case, it turns out that projectional exposedness interacts nicely with self-
duality. A caveat is that while the notion of projection does not depend on the
underlying inner product, that is not the case for orthogonal projections, i.e., a pro-
jection may become orthogonal under a suitable inner product. To avoid confusion,
we clarify that in the definition of o.p-exposedness, the inner product is fixed for all
the faces. That is, in order for a cone \scrK to be o.p-exposed, there must be an inner
product \langle \cdot , \cdot \rangle depending on \scrK only, under which all faces F of \scrK satisfy \pi (\scrK ) = F ,
where \pi depends on F and is an orthogonal projection computed with respect to \langle \cdot , \cdot \rangle .
With this in mind, in what follows we will be explicit and emphasize the choice of
inner product.

Proposition 4.18. Let \scrK \subseteq \BbbR d be a closed convex cone which is o.p.-exposed
and self-dual with respect to the same inner product \langle \cdot , \cdot \rangle . If H \subseteq \BbbR d is a subspace
such that the span of \scrK \cap H is H and \scrK \cap H is self-dual on its span under \langle \cdot , \cdot \rangle , then
\scrK \cap H is o.p.-exposed with respect to \langle \cdot , \cdot \rangle .

Proof. The faces of \scrK \cap H are of the form F \cap H, where F is a face of \scrK , e.g.,
[16, section IV]. So, let F be an arbitrary face of \scrK and let L be its span. We
will show that the orthogonal projection onto H \cap L sends \scrK \cap H to F \cap H, where
the orthogonal projection is computed with respect to \langle \cdot , \cdot \rangle , which is the same inner
product that turns \scrK into a self-dual cone.

Since \scrK is o.p.-exposed, we have

\pi L(\scrK ) = F,(4.5)

where \pi L is the orthogonal projection onto L = spanF . We also know by Theo-
rem 4.17 that

\pi H(\scrK ) =\scrK \cap H,(4.6)

where \pi H is the orthogonal projection onto H. Starting with any x0 \in \scrK \cap H define
yi+1 = \pi L(xi), xi = \pi H(yi) for i \geq 1. By (4.5) and (4.6), all the xi and yi remain in
\scrK . Moreover, von Neumann's theorem for alternate projections onto closed subspaces
[52, Theorem 13.7] implies that both the sequences xn and yn converge to \pi H\cap L(x0),
which, since \scrK is closed, implies \pi H\cap L(x0) is in \scrK , and hence in \scrK \cap H \cap L. However,
since F is a face of \scrK and L is its span, we have \scrK \cap L = F , so we conclude that
\pi H\cap L(x0) \in F \cap H. Therefore, \pi H\cap L(\scrK \cap H)\subseteq F \cap H. Since \pi H\cap L(F \cap H) = F \cap H,
we obtain \pi H\cap L(\scrK \cap H) = F \cap H, as intended.

The main result. From Proposition 4.18, a self-dual slice of an o.p.-exposed self-
dual cone must also be o.p.-exposed. But pointed o.p.-exposed polyhedral cones were
shown in [48, Theorem 3.7] to be simplicial, i.e., linearly isomorphic to the nonnegative
orthant; see also [7].3 Piecing everything together, we obtain the following result.

Theorem 4.19. Let S be a PSD slack matrix of a self-dual polyhedral cone \scrK .
If S is not diagonal, then it is not completely positive semidefinite.

Proof. We prove the contrapositive statement, so suppose that S is completely
positive semidefinite. By Lemma 4.16, \scrK is linearly isomorphic to a slice of \scrS k

+ which

3This result was first announced in [7], but the proof seems to have a gap as described in [48,
p. 233].
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1116 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

must be self-dual with respect to the Frobenius inner product. \scrS k
+ is also o.p-exposed

with respect to the Frobenius inner product, which can be inferred from [12, Example
3.1] or from [41, Proposition 33 and equation (18)].4 But then, by Proposition 4.18,
this slice must be o.p.-exposed, which would imply that it is simplicial, i.e., isomorphic
to a nonnegative orthant, by [48, Theorem 3.7]. Therefore, S must be diagonal.

In view of Theorem 3.5, a pointed full-dimensional polyhedral cone \scrK \subseteq \BbbR d has a
diagonal slack if and only if \scrK is simplicial, i.e., isomorphic to a nonnegative orthant.
In particular, irreducible cones in \BbbR d for d\geq 3 never have diagonal slacks. We register
this as a corollary of Theorem 4.19.

Corollary 4.20. Let \scrK \subseteq \BbbR d be a self-dual polyhedral cone under some inner
product, with d\geq 3. If \scrK is not simplicial (or, in particular, if \scrK is irreducible), then
none of the PSD slacks of \scrK are completely positive semidefinite.

5. Numerical experiments and conclusions. The characterization given by
Theorem 3.6 allows us to try to enumerate self-dual polyhedral cones in some circum-
stances. Note that a simple combinatorial consequence of Theorem 3.6 is that the
support of some slack matrix of a self-dual polyhedral cone \scrK must be symmetric
and contain the diagonal. This corresponds to the existence of a bijection \varphi from
the extreme rays of \scrK to those of \scrK \ast (which we identify with facets of \scrK ) such that
v \subseteq \varphi (w) if and only if w \subseteq \varphi (v) and such that v \not \in \varphi (v) for all v,w extreme rays of
\scrK . This is a purely combinatorial property, and we say that in this case \scrK is strongly
involutive combinatorially self-dual .

This is a very special type of combinatorial self-duality. We say that a polyhedral
cone \scrK is combinatorially self-dual if there exist a bijection from the set of its faces to
itself that inverts inclusion. Equivalently, \scrK is combinatorially self-dual if and only
if it is combinatorially equivalent to its dual, i.e., the face lattices of \scrK and \scrK \ast are
isomorphic. We recall that the face lattice of a polyhedral set is simply the set of its
faces together with the partial order given by the inclusion. These notions all have
analogues for polytopes, replacing duals by polars, and we will make use of polytopes
and cones interchangeably throughout this section.

Combinatorial self-duality in general does not need to be even involutive [30, 33],
i.e., a combinatorially self-dual polyhedral cone may not have a slack matrix with
symmetric support, much less be strongly involutive.

The study of combinatorial self-duality in the context of polytopes has a long
history, especially in three dimensions. Efforts to enumerate these go back to the
19th century [35] and a characterization of combinatorially self-dual 3-polytopes can
be found in [3]. The strongly involutive version has been recently studied in [13].
Since strongly involutive combinatorially self-dual polytopes are in one-to-one corre-
spondence to strongly involutive combinatorially self-dual polyhedral cones, one can
use this body of literature to generate polyhedral cones that are candidates for being
self-dual.

In general, we can make use of enumerations that have been made of combi-
natorial types of polytopes for fixed dimension and number of vertices. In [14] we
can find complete enumerations of all self-dual 3-polytopes up to 15 vertices (up
to combinatorial equivalence), while in [20] we can find the complete enumeration
of all 4-polytopes of up to 9 vertices. There seems to be little literature regarding

4Equation (18) indicates the inner product used in Proposition 33 of [41]. For the algebra of real
symmetric matrices, this inner product becomes \langle X,Y \rangle = tr(X \circ Y ), where X \circ Y := (XY + Y X)/2
is the Jordan product in \scrS k. With that, indeed \langle X,Y \rangle = tr(XY ) holds.
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SELF-DUAL POLYHEDRAL CONES AND THEIR SLACKS 1117

Table 1
Number of 3-polytopes with between 4 and 17 vertices that are combinatorially self-dual and

strongly involutive combinatorially self-dual.

vertices 4 5 6 7 8 9 10 11 12 13 14 15 16 17

s.d. 1 1 2 6 16 50 165 554 1908 6667 23556 84048 ? ?

s.i.c.s.d 1 0 1 1 2 4 11 24 72 212 674 2195 7447 25529

Table 2
Number of 4-polytopes with between 5 and 9 vertices that are combinatorially self-dual and

strongly involutive combinatorially self-dual.

vertices 5 6 7 8 9

s.d. 1 1 3 13 69

s.i.c.s.d 1 0 1 1 4

self-duality for polytopes of dimension higher than three so no efforts have been made
to enumerate specifically those polytopes. Using these lists as starting points we
checked for strong involutive self-duality by simply using brute force and checking
for each case if there exists a permutation of the columns of the support of the slack
matrix that makes it symmetric and nonzero in the diagonal, thus deriving a list of
strongly involutive combinatorially self-dual polytopes.

An alternative approach in dimension 3 is to use the results of [13] to generate
directly only 3-polytopes that are strongly involutive combinatorially self-dual, as in
that paper they provide a generating procedure guaranteed to generate all of them.
We used this approach to double check the results obtained with the previous method
and extend it to 3-polytopes of up to 17 vertices.

For three dimensions the results can be seen in Table 1, while for four dimensions
we can find it in Table 2. These correspond to polyhedral cones of dimensions four
and five, respectively. Note that the case for three-dimensional polyhedral cones was
settled by [6]: they have self-dual realizations if and only if they have an odd number
of rays, which happens if and only if they are strongly involutive combinatorially
self-dual (see also [34, Corollary 4.2]). Here, by a self-dual realization of a cone \scrK we
mean a self-dual cone \scrK \prime that is combinatorially equivalent to \scrK .

Having generated these candidates, one still has to verify if they are effectively
self-dual and find an actual self-dual realization. While being strongly involutive com-
binatorially self-dual is a necessary condition, it is a purely combinatorial one, and
there is no reason to believe it to be sufficient.

One very naive approach to finding self-duality in our sense given a strongly invo-
lutive combinatorially self-dual cone is to rely on Theorem 3.6. If we have a strongly
involutive combinatorial self-duality in a d-polyhedral cone we have a slack matrix
with symmetric support with nonzero elements in the diagonal. We want a nonnega-
tive PSD matrix with rank d and the same support. Searching for positive semidefinite
matrices with fixed zero entries is achievable by semidefinite programming. The only
problem is the rank condition, which is extremely hard to enforce. Therefore we chose
not to enforce it and try to satisfy only the other conditions.

Basic semidefinite approach. Given a symmetric 0/1 matrix M with ones in the
diagonal, corresponding to the support of the slack matrix guaranteed by the strongly
involutive combinatorial self-duality we will solve the semidefinite program:
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1118 JO\~AO GOUVEIA AND BRUNO F. LOUREN\c CO

max
X

\sum 
i,j

Xij

s.t. Xij = 0 if Mij = 0;

Xii = 1 \forall i;
X \succeq 0.

Note that not only are we not enforcing the rank, but we are also not directly enforcing
the positivity of the nonzero entries, only maximizing their sum. We are also fixing the
entries in the diagonal to be one to make the problem compact. Somewhat surprisingly
this turns out to be sufficient in many instances.

Straightforwardly solving the program above with MOSEK 8.0.0.60 [2] we already
get in most cases of Table 1 (all but around three hundred cases) matrices that are
numerically convincingly rank 4 and that have positive entries in all the nonzero
prescribed positions. Moreover, whenever the solution from the above semidefinite
program fails to be rank 4 or nonnegative, one can try to change the objective to\sum 

i,j cijXij , where the cij are random positive numbers.
With that small change we get semidefinite slack matrices in all the instances of

Table 1. In fact we can get in all cases matrices whose nonzero prescribed entries are
at least 10 - 4, the first four eigenvalues roughly in the interval between 1 and 9 and
all the rest having an absolute value smaller than 10 - 13. Note that this accuracy can
in practice essentially be arbitrarily improved by doing alternate projections between
the set of matrices of rank at most 4 and those with the right support.

Although this does not immediately rigorously prove that all the strongly invo-
lutive combinatorially self-dual polyhedral cones with up to 17 vertices in dimension
4 actually have self-dual realizations, since we are not working with exact certifi-
cates, it strongly hints at that result. In fact one immediately suspects the following
to be true.

Conjecture 5.1. All four-dimensional strongly involutive combinatorially self-
dual polyhedral cones have self-dual realizations.

For higher dimensions the data is too small to formulate any educated guess. The
seven examples in Table 2 all seem to have self-dual realizations, since the semidef-
inite approach yields similarly positive results, but in fact all but two of them are
simply pyramids over examples already in Table 1 so we have only two new examples.
One interesting avenue of progress would be to see if restricting to strongly involutive
combinatorially self-dual polytopes or even simply combinatorially self-dual polytopes
could make it possible to extend the enumeration efforts of polytopes to higher di-
mensions and a higher number of vertices, as that would provide us with new novel
extreme rays of DNNn as well as possibly give us some evidence on which to base a
more general version of the previous conjecture.

To end the section, one should point out that, although only numerically, the slack
matrices attained allow one to derive an approximately negatively self-polar polytope
(or self-dual polyhedral cone) for each of the instances. Below we offer an example of
that. The code that implements the process above as well as the other matrices we
obtained are available in the following link:

https://github.com/bflourenco/self dual slacks

Example 5.2. Applying the algorithm described above to a certain 10\times 10 support
matrix corresponding to a strongly involutive combinatorially self-dual polytope, we
obtained the approximate rank 4 PSD matrix M presented below.
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Fig. 4. A negatively self-polar polytope P obtained numerically from our procedure.

\left(                

1 0.860 0.631 0.608 0 0 0.329 0.631 0 0.608
0.860 1 0.860 0.414 0.414 0 0 0.860 0 0.414
0.631 0.86 1 0.608 0.608 0 0 0.631 0.329 0
0.608 0.414 0.608 1 0 0 0.541 0 0.541 0
0 0.414 0.608 0 1 0.541 0 0.608 0.541 0
0 0 0 0 0.541 1 0.707 0.329 0.707 0.541

0.329 0 0 0.541 0 0.707 1 0 0.707 0.541
0.631 0.860 0.631 0 0.608 0.329 0 1 0 0.608
0 0 0.329 0.541 0.541 0.707 0.707 0 1 0

0.608 0.414 0 0 0 0.541 0.541 0.608 0 1

\right)                
This might not be a slack matrix of a polytope in the sense we introduced them

in this paper, as we have scaled the rows and columns. However, we can correct
that by performing a singular value decomposition, M =USV T . There are only four
numerically positive singular values, so we can write M \approx U \prime U \prime T , where U \prime is the
10\times 4 matrix obtained multiplying each of the first four columns of U by the square
root of the corresponding entry of the diagonal of S. Finally, by Perron--Frobenius
the first column of U \prime has constant sign, so if we divide it by it we get a 10\times 4 matrix

W = [1,W ], where WW
T
is still approximately PSD and has the same support. The

rows of W are then approximately the vertices of a negatively self-polar polytope.
By looking at the zeros in the support we can reconstruct and plot the facets and

we obtain in this case the polytope P in Figure 4. The cone generated by \{ 1\} \times P is
then numerically self-dual.
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