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Automorphisms of Rank-One Generated Hyperbolicity Cones and Their
Derivative Relaxations*
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Abstract. A hyperbolicity cone is said to be rank-one generated (ROG) if all its extreme rays have rank 1,
where the rank is computed with respect to the underlying hyperbolic polynomial. This is a natural
class of hyperbolicity cones which are strictly more general than the ROG spectrahedral cones. In
this work, we present a study of the automorphisms of ROG hyperbolicity cones and their derivative
relaxations. One of our main results states that the automorphisms of the derivative relaxations
are exactly the automorphisms of the original cone fixing a certain direction. As an application, we
completely determine the automorphisms of the derivative relaxations of the nonnegative orthant
and of the cone of positive semidefinite matrices. More generally, we also prove relations between
the automorphisms of a spectral cone and the underlying permutation-invariant set, which might be
of independent interest.
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1. Introduction. In this work, our goal is to prove several results on the automorphism
group of a particular class of hyperbolicity cones and their derivative relaxations. We start
with some general observations about the importance of automorphism groups of cones. An
initial motivation is that it provides deep insight into the properties of the cone. As a concrete
example, we can consider the notion of Lyapunov rank (also known as the bilinearity rank)
[40, 18, 17, 35, 34] of a pointed full-dimensional closed convex cone \scrK \subseteq \BbbR n, which is the
dimension of the Lie algebra of the automorphism group of \scrK and is denoted by \beta (\scrK ). If
\beta (\scrK )\geq n holds, then \scrK is said to be a perfect cone [35, Theorem 1], and a complementarity
condition such as ``0 = \langle x, y\rangle , x\in \scrK , y \in \scrK \ast "" (here, \scrK \ast is the dual cone of \scrK ) can be rewritten
as a square system of equations [17, Proposition 2].1 This influences how easy (or how hard)
it is to solve complementarity problems involving \scrK . More generally, it can be shown that
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1One example of this phenomenon is how the conditions \langle x, y\rangle = 0, x \in \BbbR n
+, y \in \BbbR n

+ imply n equations
xiyi = 0.
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AUTOMORPHISMS OF ROG HYPERBOLICITY CONES 237

L belongs to the Lie algebra of the automorphism group of \scrK if and only if the following
condition holds (see [17, page 157]):

x\in \scrK , y \in \scrK \ast , \langle x, y\rangle = 0\Rightarrow \langle L(x), y\rangle = 0.

Another interesting application of the study of automorphism groups is a classification of
3-dimensional cones that have an automorphism group of dimension at least 2 [21]. A key
step is the analysis of the action of a certain parametric subgroup on the elements of the cone;
see [21, page 501].

There are also more practical concerns related to the efficient optimization over the un-
derlying cone. When the problem data has some amount of symmetry, it might be possible
to use symmetry-reduction techniques in order to decrease the size of the problem or prove
some favorable property; see [26, 15, 10, 46] for examples in semidefinite programming and
polynomial optimization. This is contingent, of course, on having a good grasp of the linear
transformations that preserve the cone. The nonnegative orthant \BbbR n

+ and the positive semi-
definite cone \scrS n

+ are rich in automorphisms; this provides fertile ground for techniques that
exploit the symmetries in problem data.

We now return to our subject matter: hyperbolic polynomials and hyperbolicity cones. We
recall that a cone \scrK is said to be homogeneous if its group of automorphisms acts transitively
on the relative interior of \scrK . Furthermore, a cone is said to be symmetric if it is homogeneous
and self-dual with respect to some inner-product. Typical examples of symmetric cones include
the aforementioned \BbbR n

+, \scrS n
+ but also the second-order cones, which are also known as Lorentz

cones. To the best of our knowledge, G\"uler [19] was the first to bring hyperbolic polynomials
to the attention of optimizers in the form of hyperbolic programming. One of his motivations
was to try to extend certain types of long-step interior point methods from symmetric cones
to other classes of cones. Among many results, G\"uler proved that all homogeneous cones are
hyperbolicity cones [19, section 8].

From the conic optimization point of view, hyperbolicity cones are the next natural step
after symmetric cones and homogeneous cones. And, of course, they have been subject of
much recent research activity. There are deep questions in convex algebraic geometry related
to hyperbolicity cones, such as the generalized Lax conjecture. Related to that, for many
years, one of the best results on the generalized Lax conjecture was the one proved by Chua
(see the comment in [38, page 64]): all homogeneous cones are spectrahedral [9]; see also [12,
Proposition 1 and section 4] by Faybusovich.

This kind of striking result is only possible thanks to powerful algebraic theories for homo-
geneous cones (T-algebras [48]) and symmetric cones (Euclidean Jordan algebras [11]), which
are viable because these cones have ``large"" automorphism groups. Indeed, the Lyapunov
rank of a symmetric cone must be at least the dimension of the underlying space; see [17,
Theorem 5].

From this point of view, it seems natural to try to understand the automorphism group
of hyperbolicity cones. We would like to understand how large can it be, what can it tell us
about the structure of the underlying cone, and so on.

Unfortunately, a significant hurdle in this enterprise is that determining the automor-
phisms of any given mathematical object is typically very hard. In order to appreciate the
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238 MASARU ITO AND BRUNO F. LOUREN\c CO

difficulty of this task, we may recall that every polyhedral cone can be realized as a hyperbol-
icity cone. Therefore, a general theory of automorphisms of hyperbolicity cones would need
to contemplate the automorphisms of all polyhedral cones, so this is a nonstarter.

Fortunately, we found a class of hyperbolicity cones that is quite suitable for the study
of its automorphisms: the rank-1 generated (ROG) hyperbolicity cones together with their
derivative relaxations.

A (pointed) hyperbolicity cone is said to be ROG if all its extreme rays have rank 1
when computed with respect to the underlying hyperbolic polynomial. We recall that a
spectrahedral cone is said to be ROG if all its extreme rays are generated by matrices of
rank 1; e.g., see [22]. In particular, all ROG spectrahedral cones are also ROG hyperbolicity
cones if the hyperbolic polynomial is appropriately chosen; see subsection 3.1.1. The ROG
spectrahedral cones themselves are quite important because they are connected to whether
semidefinite program relaxations of certain quadratic programs are exact or not; see [22, 1].
However, we note that ROG hyperbolicity cones form a strictly larger class of cones because
the second-order cones in dimension 4 or larger cannot be realized as ROG spectrahedral
cones; see Proposition 3.12.

Our main results are as follows:
\bullet We provide a detailed study of the properties and facial structure of ROG hyper-

bolicity cones. Given a regular ROG hyperbolicity cone \Lambda + of dimension at least 3
and generated by a polynomial p along a direction e, we show, in Theorem 3.15, the
formula

Aut(\Lambda 
(k)
+ ) = \{ A\in Aut(\Lambda +) | A(\BbbR +e) =\BbbR +e\} 

for k satisfying 1 \leq k \leq deg p  - 3. That is, the automorphisms of the kth deriva-

tive relaxation \Lambda 
(k)
+ are precisely the automorphisms of \Lambda + that have the hyperbolic

direction e as an eigenvector. The proof requires both geometric and algebraic con-
siderations and makes full use of G\r arding's inequality. Surprisingly, Theorem 3.15
also admits a converse of sorts, and with some caveats, it is possible to show that the
automorphisms of \Lambda + must also be automorphisms of derivative relaxations of faces
of \Lambda +; see Theorem 3.19.

\bullet With the aid of Theorem 3.15 we completely determine the automorphism groups of
the derivative relaxations of \scrS n

+ and \BbbR n
+ in Theorems 4.1 and 4.3, respectively. The

derivative relaxations of \scrS n
+ and \BbbR n

+ are related in the sense that the former is the
spectral cone generated by the latter. Related to that, we also prove a general result
on the automorphisms of spectral cones; see Theorem 4.4.

\bullet Finally, in subsection 4.2, we show some corollaries of our results. We compute the
Lyapunov ranks of derivative relaxations of \scrS n

+ and \BbbR n
+. We also discuss the nonho-

mogeneity of derivative relaxations of ROG cones.
This work is organized as follows. In section 2, we discuss the notation and some basic

tools from convex analysis and hyperbolicity cones. In section 3, we discuss ROG hyperbolicity
cones and prove our main result on their automorphisms. In section 4, we discuss applications
of our results. Finally, in section 5 we conclude this work with some open questions.
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AUTOMORPHISMS OF ROG HYPERBOLICITY CONES 239

2. Preliminaries. Let C \subseteq \BbbR n be a convex set. We denote the relative interior, span, and
dimension of C by riC, spanC, and dimC, respectively.

Next, let \scrK \subseteq \BbbR n be a closed convex cone. We say that \scrK is pointed if \scrK \cap  - \scrK = \{ 0\} . If
dim\scrK = n, then \scrK is said to be full-dimensional. If \scrK is pointed and full-dimensional, we say
that it is regular . A face of \scrK \subseteq \BbbR n is a convex cone F \subseteq \scrK such that every x, y \in \scrK with
x + y \in F satisfies x, y \in F . In this case, we write F � \scrK . If F \not = \scrK , then we say that F
is a boundary face. A face F is said to be exposed if it can be written as the intersection of
\scrK with one of its supporting hyperplanes. An extreme ray is a face of \scrK of dimension 1. If
F = \{ \alpha x | \alpha \geq 0\} �\scrK , we say that F is the extreme ray generated by x .

We now recall some basic properties of faces; more details can be seen in [36]. A useful
property is that, for two faces F1 �\scrK , F2 �\scrK , we have

(2.1) F1 = F2 \Leftarrow \Rightarrow (riF1)\cap (riF2) \not = \emptyset ;

see [39, Corollary 18.1.2]. Also, for every convex subset S \subseteq \scrK , there exists a unique face
F �\scrK such that S \subseteq F and (riS)\cap (riF ) \not = \emptyset . This is called the minimal face of \scrK containing
S and will be denoted by F (S). In particular, F (S) is the intersection of all faces of \scrK 
containing S, and for a face \^F �\scrK we have

(2.2) \^F = F (S) \Leftarrow \Rightarrow (riS)\cap (ri \^F ) \not = \emptyset \Leftarrow \Rightarrow riS \subseteq ri \^F

(see [36, Proposition 3.2.2]), or it can also be inferred from the results in [39, section 18].
If S is the convex hull of finitely many points \{ x1, . . . , xr\} \subseteq \scrK , we will simplify the notation

and write F (x1, . . . , xr). The following well-known lemma will be useful and is closely related
to [4, Proposition 3.3].

Lemma 2.1. Let \{ x1, . . . , xr\} \subseteq \scrK be a finite subset of points of a closed convex cone \scrK .
Then

F (x1, . . . , xr) = F (x1 + \cdot \cdot \cdot + xr).

Proof. By definition, x1 + \cdot \cdot \cdot + xr \in riF (x1 + \cdot \cdot \cdot + xr). Since riF (x1 + \cdot \cdot \cdot + xr) is a cone,
we also have (x1+ \cdot \cdot \cdot +xr)/r \in riF (x1+ \cdot \cdot \cdot +xr). Next, let S be the convex hull of x1, . . . , xr.
Then, (2.2) implies that riS \subseteq riF (x1, . . . , xr).

However, since (x1+\cdot \cdot \cdot +xr)/r \in riS holds,2 we conclude that riF (x1, . . . , xr) and riF (x1+
\cdot \cdot \cdot + xr) intersect, so they are equal by (2.1).

The automorphism group of a cone \scrK is the set

Aut(\scrK ) := \{ A\in GLn(\BbbR ) | A\scrK =\scrK \} ,

which is a subgroup of GLn(\BbbR ) := \{ A\in \BbbR n\times n | detA \not = 0\} .
The (n + 1)-dimensional second-order cone in \BbbR n+1 is denoted by \scrL n+1

2 := \{ (x0, \=x) \in 
\BbbR \times \BbbR n | x0 \geq 0, x20 \geq x21+ \cdot \cdot \cdot +x2n\} . The space of n\times n real symmetric matrices is denoted by

2A quick way to see this is to note that S is the image of the unit simplex P := \{ (\alpha 1, . . . , \alpha r) \in \BbbR r | 
\alpha i \geq 0, \alpha 1 + \cdot \cdot \cdot \alpha r = 1\} by the linear map A that takes the ith unit vector in \BbbR r to xi. Then, recalling that
riAP =A(riP ) ([39, Theorem 6.6]) leads to the desired conclusion.
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240 MASARU ITO AND BRUNO F. LOUREN\c CO

\scrS n, and the cone of n\times n real symmetric positive semidefinite matrices is denoted by \scrS n
+. If

x\in \BbbR n, we denote by Diag(x) the diagonal matrix in \scrS n having x as its diagonal.

2.1. Hyperbolicity cones. We review some basic facts about hyperbolicity cones. More
details can be seen in [19, 5, 38]. Let p : \BbbR n \rightarrow \BbbR be a homogeneous polynomial of degree
d := deg p. If e \in \BbbR n is such that p(e) > 0 and for every x the polynomial t \mapsto \rightarrow p(x - te) only
has real roots, then p is said to be hyperbolic along e. The corresponding hyperbolicity cone
is given by

(2.3) \Lambda +(p, e) := \{ x\in \BbbR n | all roots of t \mapsto \rightarrow p(te - x) are nonnegative\} .

We will sometimes omit (p, e) and simply write \Lambda +.
Given x \in \BbbR n, the roots of t \mapsto \rightarrow p(te  - x) are called eigenvalues of x and denoted by

\lambda 1(x)\geq \lambda 2(x)\geq \cdot \cdot \cdot \geq \lambda d(x), counting with multiplicity. We also define \lambda :\BbbR n \rightarrow \BbbR d by

\lambda (x) := (\lambda 1(x), \lambda 2(x), . . . , \lambda d(x))
T .

Let Dk
ep(x) =

dk

dtk p(x+ te)| t=0 denote the kth directional derivative of p in the direction
e, which becomes a hyperbolic polynomial of degree d - k along e [14, Lemma 1]. With that,
we define the kth derivative relaxation (also called the Renegar derivative) of \Lambda +(p, e) by

(2.4) \Lambda 
(k)
+ := \Lambda +(D

k
ep, e).

We note that \Lambda 
(k)
+ can be alternatively written as (cf. [38, Proposition 18, Corollary 19, and

Theorem 20])

(2.5) \Lambda 
(k)
+ := \{ x\in \BbbR n | Dk

ep(x)\geq 0, Dk+1
e p(x)\geq 0, . . . , Dd - 1

e p(x)\geq 0\} .

Furthermore (2.5) implies that \Lambda 
(0)
+ \subseteq \cdot \cdot \cdot \subseteq \Lambda 

(d - 1)
+ holds. Next, we recall some facts on the

faces of hyperbolicity cones.

Lemma 2.2 (Renegar [38, Proposition 24]). Suppose that \Lambda + = \Lambda +(p, e) is regular. For

i = 0,1, . . . ,deg p  - 2, every boundary face of \Lambda 
(i)
+ is either a face of \Lambda + or an (exposed)

extreme ray not contained in \Lambda +.

Lemma 2.3 (Renegar [38, Proposition 25]). Let F be a boundary face of \Lambda + other than its
lineality space \Lambda + \cap ( - \Lambda +). For any x \in riF , let m be the multiplicity of 0 as an eigenvalue.

Then, F is a face of \Lambda 
(m - 1)
+ .

Rank function over hyperbolicity cones. For x \in \Lambda +(p, e), we define the rank(x) as d - m,
where m is the multiplicity of 0 as an eigenvalue of x. In other words, rank(x) is the number
of nonzero eigenvalues of x. For convenience we also define mult(x) :=m so that

rank(x) +mult(x) = d.

We recall that p is also hyperbolic along every \^e \in ri\Lambda +(p, e) and that \Lambda +(p, e) = \Lambda +(p, \^e);
see [38, Theorem 3]. Although the eigenvalue function \lambda depends on the chosen hyperbolicity
direction, the rank and mult functions do not; see [38, Proposition 22]. So rank and mult only
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AUTOMORPHISMS OF ROG HYPERBOLICITY CONES 241

depend on p and the underlying cone but not on the choice of hyperbolicity direction (as long
as the direction belongs to the relative interior of the cone).

If F is a face of \Lambda +(p, e), we define the rank of F as the maximum of rank(x) over F . The
rank function has the following well-known properties.

Proposition 2.4 (properties of rank). Let x, y \in \Lambda + and F,F \prime be faces of \Lambda +.
(i) rank(x+ y)\leq rank(x) + rank(y).
(ii) Suppose x\in F ; then x\in riF if and only if rank(x) = rank(F ).
(iii) rank(F )< rank(F \prime ) holds when F \subsetneq F \prime .
(iv) If \Lambda + is pointed and x\in \Lambda +, then rank(x) = 0\leftrightarrow x= 0.

Proof. Item (i) is true if x = y because rank(2x) = rank(x). Next, we assume x \not = y and
let \scrE := \{ x, y\} . It is shown in [8, Proposition 3.2] that the function r : 2\scrE \rightarrow \BbbN defined by
r(\emptyset ) := 0 and

r(S) := rank

\Biggl( \sum 
z\in S

z

\Biggr) 

is a polymatroid and, therefore, submodular. We have

r(\{ x\} \cup \{ y\} ) + r(\{ x\} \cap \{ y\} )\leq r(\{ x\} ) + r(\{ y\} ).

That is, rank(x+ y)\leq rank(x) + rank(y). This proves item (i).
Item (ii) is a direct consequence of [38, Theorem 26] which gives an analogous statement

for the mult(\cdot ) function. Moreover, item (ii) combined with (2.1) leads to item (iii). Finally,
item (iv) follows from [38, Proposition 11], which states that mult(x) = d if and only if x
belongs to the lineality space of \Lambda +. Since \Lambda + is pointed, the lineality space is \{ 0\} .

Minimal polynomials. If \Lambda + is a hyperbolicity cone, there could be several polynomials of
different degrees satisfying \Lambda + = \Lambda +(p, e). However, the polynomial of minimal degree that
generates \Lambda + is unique up to scaling by a positive constant. The precise result is as follows.

Proposition 2.5 (Helton and Vinnikov [20, Lemma 2.1]). A homogeneous hyperbolic polyno-
mial p of minimal degree such that \Lambda + =\Lambda +(p, e) is unique up to multiplication by a positive
constant. If \Lambda +(p, e) = \Lambda +(q, e), then q = ph, where h is a polynomial that is strictly positive
on a dense connected subset of \Lambda +(p, e).

Basic properties of automorphisms of hyperbolicity cones. We start our explorations on
automorphisms with the following basic result, which connects the automorphisms of a hy-
perbolicity cone with the underlying hyperbolic polynomial, provided that it is minimal.

Proposition 2.6. Suppose that \Lambda + = \Lambda +(p, e), where p is of minimal degree, and let A \in 
GLn(\BbbR ). Then A \in Aut(\Lambda +) if and only if Ae \in ri\Lambda + and there exists a positive constant \kappa 
such that p= \kappa (p \circ A).

Proof. First, suppose that A\in Aut(\Lambda +), and let q := p\circ A. Because A is an automorphism
and e \in ri\Lambda +, then Ae \in ri\Lambda +, so p is also hyperbolic along Ae; e.g., see [38, Theorem 3].
This tells us that q= p \circ A is hyperbolic along e.
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242 MASARU ITO AND BRUNO F. LOUREN\c CO

The roots of t \mapsto \rightarrow q(x - te) are nonnegative if and only if the roots of t \mapsto \rightarrow p(Ax - tAe) are
nonnegative. That is, if and only if Ax\in \Lambda +. But, since A is an automorphism, this happens
if and only if x \in \Lambda +. We conclude that \Lambda + = \Lambda +(q, e). The polynomial p is minimal, and q
has the same degree as p, so Proposition 2.5 tells us that there exists a positive constant \kappa 
such that

p= \kappa (p \circ A).

Next, we prove the converse, so suppose that A \in GLn(\BbbR ) is such that Ae \in ri\Lambda + and
there exists a positive constant \kappa such that p= \kappa (p\circ A). Then, p and p\circ A are both hyperbolic
along e and generate the same hyperbolicity cone \Lambda +(p, e) = \Lambda +(p \circ A,e).

Let x\in \BbbR n be arbitrary. Then, \Lambda +(p, e) = \Lambda +(p\circ A,e) implies that the roots of t \mapsto \rightarrow p(x - te)
are nonnegative if and only if the roots of t \mapsto \rightarrow p(Ax - tAe) are nonnegative. Next, we recall
that the hyperbolicity cone stays the same if another relative interior direction is chosen as
hyperbolic direction ([38, Theorem 3]). Since Ae \in ri\Lambda +, the roots of t \mapsto \rightarrow p(Ax  - tAe) are
nonnegative if and only if the roots of t \mapsto \rightarrow p(Ax - te) are nonnegative. The overall conclusion
is that x\in \Lambda + if and only if Ax\in \Lambda +. That is, A\in Aut(\Lambda +).

Next, we would like to understand how rank(Ax) and rank(x) are related if x \in \Lambda + and
A\in Aut(\Lambda +). Unfortunately, in general, rank(x) \not = rank(Ax).

Example 2.7 (automorphisms do not necessarily preserve the hyperbolic rank). We have
\BbbR 3
+ = \Lambda +(\~p, (1,1,1)), where \~p(x1, x2, x3) := x21x2x3. Let x = (1,0,0) and y = (0,1,0). Then

the eigenvalue vectors of x and y with respect to \~p are \lambda (x) = (1,1,0,0) and \lambda (y) = (0,0,1,0).
Therefore, rank(x) = 2 and rank(y) = 1. With that, the linear map A :\BbbR 3 \rightarrow \BbbR 3 that exchanges
x1 and x2 and fixes x3 is an automorphism of \BbbR 3

+ such that Ax= y and rank(x) \not = rank(Ax).

In Example 2.7 the rank is not preserved under automorphisms because of redundancies
in how \BbbR 3

+ is realized as a hyperbolicity cone. If we had used p(x1, x2, x3) := x1x2x3, there
would be no such problem.

Proposition 2.8. Suppose that \Lambda + = \Lambda +(p, e), where p is of minimal degree, and let A \in 
Aut(\Lambda +). If x\in \Lambda + and A\in Aut(\Lambda +), then rank(Ax) = rank(x).

Proof. Proposition 2.6 tells us that there exists a positive constant \kappa such that

p= \kappa (p \circ A).

This implies that t \mapsto \rightarrow p(Ax - tAe) and t \mapsto \rightarrow p(x - te) have the same number of positive roots.
Furthermore, the rank does not change if another relative interior point is chosen as direction
of hyperbolicity ([38, Proposition 22]), so the numbers of positive roots of t \mapsto \rightarrow p(Ax - tAe)
and t \mapsto \rightarrow p(Ax - te) coincide. Therefore, rank(x) = rank(Ax).

3. ROG hyperbolicity cones, derivative relaxations, and automorphisms. In this sec-
tion, we present a study of ROG hyperbolicity cones and their derivative relaxations. We
start with some basic properties and examples in order to set the stage for a study of their
automorphisms.
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3.1. ROG hyperbolicity cones and their facial structure.
Definition 3.1 (ROG hyperbolicity cones). A pointed hyperbolicity cone \Lambda + is said to be

rank-one generated (ROG) with respect to p and e if \Lambda + = \Lambda +(p, e) and all extreme rays of
\Lambda + are generated by rank 1 elements (computed with respect to p and e).

When it is clear from the context we will simply say that \Lambda + is ROG and omit the
reference to p and e.

Remark 3.2. Being ROG is a property that depends on the choice of p. For example,
let p and \~p be such that p(x1, x2, x3) := x1x2x3 and \~p(x1, x2, x3) := x21x2x3. Then, \BbbR 3

+ =
\Lambda +(p, (1,1,1)) = \Lambda +(\~p, (1,1,1)), and \BbbR 3

+ is ROG with respect to p but not with respect to \~p.

We say that a closed convex cone \scrK is strictly convex if its only faces are \{ 0\} ,\scrK , and
extreme rays. We have the following lemma.

Lemma 3.3 (extreme rays and strictly convex faces). Suppose that \Lambda + =\Lambda +(p, e) is regular
and ROG with respect to p. Then the following assertions hold:

(i) If F �\Lambda + is a face of rank 1, then F is an extreme ray.
(ii) If x, y \in \Lambda + are linearly independent and have rank 1, then rank(x+ y) = 2.
(iii) Let F � \Lambda + be a face such that dimF \geq 2. Then, F is strictly convex if and only if

rank(F ) = 2.

Proof.
(i) Suppose that F is not an extreme ray. Then, F must contain at least one extreme

ray \^F such that \^F is properly contained in F . \^F is a face as well, so by item (iii)
of Proposition 2.4, we must have rank( \^F ) = 0. Since \Lambda + is pointed, this implies that
\^F = \{ 0\} by item (iv) of Proposition 2.4, which contradicts the fact that \^F should have
dimension 1.

(ii) By item (i) of Proposition 2.4, rank(x+ y) \leq 2. We have x+ y \in riF (x+ y), where
we recall that F (x + y) is the minimal face of \Lambda + containing x + y. With that, we
have rank(F (x + y)) \leq 2 by item (ii) of Proposition 2.4. By Lemma 2.1, we have
F (x + y) = F (x, y), so F (x + y) has at least two distinct extreme rays since x, y
are linearly independent. In view of (i), the rank of F (x + y) cannot be 1. So,
rankF (x, y) = 2, and since x + y \in riF (x + y), Proposition 2.4 tells us that indeed
rank(x+ y) = 2.

(iii) If F is strictly convex, then the sum of two linearly independent extreme rays is in riF,
and it must have rank 2 by item (ii). Conversely, if F�\Lambda + has rank 2, by item (iii) of
Proposition 2.4, the boundary faces of F must be of rank 1 or 0, which are extreme
rays (by item (i)) or the face \{ 0\} (by item (iv) of Proposition 2.4), respectively.

Our next task is showing that if \Lambda + is ROG with respect to p and e, then p must already
be the minimal degree polynomial for \Lambda +, and this property gets propagated to the derivative
relaxations. First, we prove the following result which is a slightly refined version of [43,
Proposition 2.2].

Proposition 3.4. Suppose \Lambda + = \Lambda +(p, e) is regular and ROG with respect to p. Suppose
F �\Lambda + is a face of rank r, and let \^F be any extreme ray of F . Then, there exists a chain of
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faces of \Lambda + with length r + 1 such that \{ 0\} = F0 \subsetneq F1 = \^F \subsetneq F2 \subsetneq \cdot \cdot \cdot \subsetneq Fr - 1 \subsetneq Fr = F and
rank(Fi) = i (i= 0,1, . . . , r).

Proof. The result is clear for faces of rank r \leq 1. So suppose that F has rank r \geq 2, and
we will build a chain of faces from the bottom up. Let x1 \in F be such that x1 generates the
extreme ray \^F , and set F0 := \{ 0\} , F1 := F (x1) = \^F . It is clear that F0 \subsetneq F1 by dim(F0) = 0 \not =
1= dim(F1).

Then, for i\geq 2 we proceed as follows. If rank(Fi - 1) = r - 1, we let Fi := F, and we stop.
Otherwise, since Fi - 1 \not = F , there must be an extreme ray xi of F not contained in Fi - 1, so
we let Fi := F (x1, . . . , xi). Since xi \not \in Fi - 1, we have

Fi - 1 \subsetneq Fi.

By construction, the rank of Fi - 1 is i - 1, and we will show that the rank of Fi is i. Now, by
Lemma 2.1 we have

F (x1 + \cdot \cdot \cdot + xi) = F (x1, . . . , xi).

Furthermore, x1 + \cdot \cdot \cdot + xi \in riF (x1 + \cdot \cdot \cdot + xi) = riFi, so, by item (ii) of Proposition 2.4, it
suffices to compute the rank of x1 + \cdot \cdot \cdot + xi. Item (i) of Proposition 2.4 tells us that

rank(x1 + \cdot \cdot \cdot + xi)\leq rank(x1 + \cdot \cdot \cdot + xi - 1) + rank(xi) = i.

However, rank(x1+ \cdot \cdot \cdot +xi) is at least i - 1 since rank(x1+ \cdot \cdot \cdot +xi) = rank(Fi) and Fi contains
Fi - 1.

For the sake of obtaining a contradiction suppose that rank(x1 + \cdot \cdot \cdot + xi) = i - 1 holds.
Then, we would have rank(Fi) = rank(Fi - 1), which would imply that x1 + \cdot \cdot \cdot + xi - 1 \in riFi,
by item (ii) of Proposition 2.4. In particular, (riFi)\cap (riFi - 1) \not = \emptyset would hold which leads to
Fi = Fi - 1 by (2.1). This contradicts Fi - 1 \subsetneq Fi.

Therefore, rank(x1 + \cdot \cdot \cdot + xi) = i, and Fi is indeed a face of rank i. We conclude that
each time a new face is added to the chain, the rank increases by exactly one. Furthermore,
we can always keep adding a new face as long as Fi \not = F . Since F has rank r, this leads to a
chain of faces of length exactly r+ 1.

Proposition 3.5 (minimal polynomial of ROG cones and their derivative relaxations). Suppose
that \Lambda +(p, e) is regular and ROG with respect to p. Then the following items hold:

(i) p is a minimal degree polynomial for \Lambda +(p, e).

(ii) Dk
ep is a minimal degree polynomial for \Lambda 

(k)
+ (p, e) for all 1\leq k\leq d - 2.

(iii) For all 1\leq k\leq d - 2, \Lambda 
(k - 1)
+ is strictly contained in \Lambda 

(k)
+ .

Proof. Let d be the degree of p. Then, taking F =\Lambda +(p, e) in Proposition 3.4 and letting
\^F be an arbitrary extreme ray, there exists a chain of faces of length d+ 1

\{ 0\} = F0 \subsetneq F1 = \^F \subsetneq \cdot \cdot \cdot \subsetneq Fd =\Lambda +(p, e)

such that rank(Fi) = i. Now, suppose that there is some hyperbolic polynomial \~p of degree
\~d\leq d such that \Lambda +(p, e) = \Lambda +(\~p, e). In view of item (iii) of Proposition 2.4, the longest possible

© 2023 \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M}. \mathrm{P}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{C}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{s} 4.0 \mathrm{l}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}

D
ow

nl
oa

de
d 

03
/0

8/
24

 to
 1

33
.2

02
.2

11
.1

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



AUTOMORPHISMS OF ROG HYPERBOLICITY CONES 245

chain of faces that \Lambda +(p, e) = \Lambda +(\~p, e) can have has length at most \~d+ 1, which implies that
d+ 1\leq \~d+ 1. This proves d= \~d, and so item (i) holds.

Next, we fix k satisfying 1 \leq k \leq d - 2 and put i := d - (k + 1) \geq 1. Since rank(Fi) = i
we have mult(x) = d  - i = k + 1 for any x \in riFi, so by Lemma 2.3, Fi is a boundary face

of \Lambda 
(d - i) - 1
+ (p, e) = \Lambda 

(k)
+ (p, e). Then, since F0, F1, . . . , Fi - 1 are faces of Fi, they are faces of

\Lambda 
(k)
+ (p, e) as well. We have thus proved that \Lambda 

(k)
+ (p, e) contains the chain of faces

F0 \subsetneq F1 \subsetneq F2 \subsetneq \cdot \cdot \cdot \subsetneq Fd - (k+1) \subsetneq \Lambda 
(k)
+ (p, e),

which has length d - k+1. Now, if q is a minimal polynomial for \Lambda 
(k)
+ (p, e), the rank function

with respect to q must strictly increase along the chain of faces by item (iii) of Proposition
2.4. So q must have degree at least d - k. Since Dk

ep has degree d - k, it must be minimal as
well. This shows item (ii).

Finally, \Lambda 
(k)
+ (p, e) = \Lambda 

(k - 1)
+ (p, e) cannot hold because that would imply that \Lambda +(D

k
ep, e) =

\Lambda +(D
k - 1
e p, e), and this would contradict the minimality of Dk

ep. This shows item (iii).

We conclude this subsection with a discussion on how the faces of ROG hyperbolicity
cones are also ROG hyperbolicity cones themselves. First, let us recall that a face of any
hyperbolicity cone is also a hyperbolicity cone. This is discussed in detail in [33, section 3.1].
The basic idea is that if F � \Lambda +, z \in riF, and z has multiplicity m, then differentiating
m-times the polynomial p along e leads to a hyperbolic polynomial which, when restricted to
spanF , is hyperbolic along z and generates the face F . More precisely, we have the following.

Proposition 3.6 ([33, Corollary 3.4]). Suppose that p is hyperbolic with respect to e and that
F is a face of \Lambda +(p, e). Let z \in ri (F ), m=mult(z), and denote the restriction of Dm

e p to the
subspace spanF by q. Then, q is hyperbolic with respect to z, and F =\Lambda +(q, z) holds.

With that, we are ready to prove the following.

Proposition 3.7 (faces of ROG hyperbolicity cones are also ROG). Under the setting of Propo-
sition 3.6, if \Lambda + is regular and ROG with respect to p and e, then F is ROG with respect to
q and z.

Proof. Suppose that p has degree d, so the rank of z is r := d - m, and the degree of q is
also r. Let \^F be any extreme ray of F . By Proposition 3.4, there is a chain of faces of \Lambda +

satisfying

\{ 0\} = F0 \subsetneq F1 = \^F \subsetneq F2 \subsetneq \cdot \cdot \cdot \subsetneq Fr - 1 \subsetneq Fr = F.

In particular, all the Fi are also faces of F . Now, we consider the rank of Fi computed with
respect to q and z instead of computing with respect to p and e. F = Fr has rank r and
the rank function is strictly decreasing when we go down the chain of faces (see item (iii) of
Proposition 2.4). Since we have r+ 1 faces, it must be the case that the rank of Fi is i when
computed with respect to q and z. In particular, \^F has rank 1.

3.1.1. Examples of ROG hyperbolicity cones. In this subsection, we present two families
of ROG hyperbolicity cones.
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Symmetric cones. Let \scrE be a real finite-dimensional Euclidean space. A cone \scrK \subseteq \scrE is said
to be homogeneous if, for every x, y \in ri\scrK , there exists A \in Aut(\scrK ) such that Ax= y. Then,
a cone is said to be self-dual if there exists an inner-product \langle \cdot , \cdot \rangle under which the dual cone
\scrK \ast := \{ y \in \scrE | \langle x, y\rangle \geq 0\forall x \in \scrK \} coincides with \scrK . Finally, a cone is said to be symmetric
if it is both homogeneous and self-dual. Typical examples of symmetric cones include the
nonnegative orthant, the second-order cones, the cone of real symmetric positive semidefinite
matrices, and their direct products.

The symmetric cones are exactly the ones that arise as the cone of squares of Euclidean
Jordan algebras. More precisely, a Euclidean Jordan algebra is a finite-dimensional Euclidean
space equipped with an inner-product \langle \cdot , \cdot \rangle and a bilinear product \circ : \scrE \times \scrE \rightarrow \scrE satisfying the
properties

(i) x \circ y= y \circ x;
(ii) x \circ (x2 \circ y) = x2 \circ (x \circ y), where x2 = x \circ x;
(iii) \langle x \circ y, z\rangle = \langle x, y \circ z\rangle 

for every x, y, z \in \scrE . Every Euclidean Jordan algebra has an identity element e \in \scrE so that
e \circ x= x holds \forall x\in \scrE . Then, the corresponding cone of squares is defined by

\scrK := \{ x \circ x | x\in \scrE \} 

and \scrK is a symmetric cone [11, Theorem III.2.1] such that e belongs to the interior of \scrK .
Conversely, every symmetric cone arises in this way; see [11, Theorem III.3.1]. For more
information on Jordan algebras see [11, 27, 13].

G\"uler showed in [19, Theorem 8.1] that all homogeneous cones are hyperbolicity cones,
so, in particular, all symmetric cones are hyperbolicity cones as well. See also [45, section 2.2]
for a related discussion.

Here, we will observe that all symmetric cones are not only hyperbolicity cones, but they
can also be realized as ROG hyperbolicity cones. For those familiar with Jordan algebras this
might be almost obvious, but we explain here the relevant details briefly.

Let \scrE be a Euclidean Jordan algebra with Jordan product \circ and inner-product \langle \cdot , \cdot \rangle . An
element c\in \scrE is said to be an idempotent if c2 = c. An idempotent c is said to be primitive if
it cannot be written as the sum of two nontrivial idempotents a, b satisfying a \circ b= 0.

Every element x \in \scrE admits a spectral decomposition as follows. There are primitive
idempotents c1, . . . , cr satisfying c1 + \cdot \cdot \cdot + cr = e, ci \circ cj = 0 for i \not = j and unique real numbers
\lambda 1, . . . , \lambda r satisfying

(3.1) x=

r\sum 
i=1

\lambda ici;

see [11, Theorem III.1.2]. The number r (which depends only on the algebra \scrE and not on
the specific x) is called the rank of the algebra \scrE . In analogy with classical linear algebra,
the \lambda i is sometimes called the eigenvalues of x, and although they may be repeated, they are
uniquely defined for x. From the spectral theorem and properties of the Jordan product, one
may prove the following relations.

(3.2) x\in \scrK \leftrightarrow \lambda i \geq 0, \forall i, x\in ri\scrK \leftrightarrow \lambda i > 0, \forall i.
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Next, let \lambda i(x) denote the ith smallest eigenvalue of x, and let \lambda (x) := (\lambda 1(x), . . . , \lambda r(x)). We
define the function det\scrE : \scrE \rightarrow \BbbR given by

(3.3) det\scrE (x) := \lambda 1(x) \cdot \cdot \cdot \lambda r(x).

Let us check that det\scrE is a hyperbolic polynomial along e. First, det\scrE is indeed a polynomial
because of [11, Theorem III.1.2], which implies that the elementary symmetric polynomials
composed with the eigenvalue map \lambda are polynomials. Next, we observe that, for t \in \BbbR , the
eigenvalues of the identity element e are 1, so det\scrE (e) = 1. Then, the (Jordan algebraic)
eigenvalues of x - te are exactly \lambda 1(x) - t, . . . , \lambda r(x) - t, and they are all real. Therefore, for
every x \in \scrE , the roots of t \mapsto \rightarrow det\scrE (x - te) are the eigenvalues of x. This shows that det\scrE is a
hyperbolic along e, and in view of (3.2), the underlying hyperbolicity cone is indeed \scrK .

Finally, let F �\scrK be an extreme ray generated by x\in \scrK . By the spectral theorem, x can
be written as a nonnegative linear combination of primitive idempotents as in (3.1). Since
c2i = ci, each ci \in \scrK . Therefore, if \lambda i > 0 for some i, then since F is a face, x = \alpha ci holds for
some \alpha > 0. We have ci \circ cj = 0 for i \not = j, which implies that ci and cj cannot be parallel.
This implies that at most one eigenvalue of x can be positive. On the other hand, at least
one must be positive (since we would have x= 0 otherwise). Therefore, exactly one eigenvalue
of x is positive, and the rank of x with respect to det\scrE is 1. This shows that \scrK is an ROG
hyperbolicity cone with respect to det\scrE . We note this as a proposition.

Proposition 3.8 (symmetric cones are hyperbolicity ROG cones). Let \scrK \subseteq \scrE be a finite-
dimensional symmetric cone and \scrE be its underlying Euclidean Jordan algebra. Then \scrK is an
ROG hyperbolicity cone with respect to det\scrE in (3.3).

We speculate that the same might be true for a homogeneous cone, but this seems to be
a more complicated question. G\"uler showed that homogeneous cones are hyperbolicity cones
as well in [19, section 8]. However, it is not clear whether the polynomial p given therein is
minimal, which is a necessary condition for the cone to be ROG with respect to p, in view of
Proposition 3.5.

ROG spectrahedral cones. A closed convex cone \scrK \subseteq \BbbR m is said to be spectrahedral [37] if
for some nonnegative n there are m matrices Ai \in \scrS n such that

\scrK = \{ x\in \BbbR m | x1A1 + \cdot \cdot \cdot + xmAm \in \scrS n
+\} .

Defining the linear map \scrA (x) := x1A1 + \cdot \cdot \cdot + xmAm, \scrK can be alternatively written as

(3.4) \scrK = \{ x | \scrA (x)\in \scrS n
+\} .

Without loss of generality, we may assume that the Ai is linearly independent so that \scrA is
a linear bijection between \scrK and the cone of ``slack matrices"" \scrK S := range (\scrA ) \cap \scrS n

+, which
corresponds to a linear slice of the cone of positive semidefinite matrices. Put, otherwise, that
a cone is spectrahedral if it is linearly isomorphic to an intersection of the form \scrS n

+\cap \scrL , where
\scrL \subseteq \scrS n is a subspace.

A spectrahedral cone as in (3.4) is said to be nondegenerate if there exists \=x \in \scrK such
that \scrA (\=x) is positive definite. If \scrK is nondegenerate, then det\scrA :\BbbR m \rightarrow \BbbR given by det\scrA (x) :=
det(\scrA (x)) is a hyperbolic polynomial along \=x such that \scrK =\Lambda +(det\scrA , \=x).
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Finally, \scrK as in (3.4) is said to be ROG [22] if the following condition holds: if x generates
an extreme ray of \scrK , then the rank of the matrix \scrA (x) is 1. As mentioned in the introduction,
one reason why the study of ROG spectrahedral cones is important is because whether a
spectrahedral cone is ROG or not is intimately connected to whether semidefinite program
relaxations of certain quadratic problems are exact or not; see [22, Lemma 1.2] and [1].

Example 3.9 (ROG-ness depends on \scrA ). A spectrahedral cone \scrK may satisfy (3.4) for
different choices of \scrA . It is well known that the 3-dimensional second-order cone \{ (x0, x1, x2) | 
x0 \geq 0, x20 \geq x21+x

2
2\} can be represented as a spectrahedral cone over the 2\times 2 matrices or over

the 3\times 3 matrices (e.g., see [22, Example 3.5]). In particular, following [22, Example 3.5], let

(3.5) \scrA 1(x) :=

\left(  x0 x1 x2
x1 x0 0
x2 0 x0

\right)  , \scrA 2(x) :=

\biggl( 
x0 + x1 x2
x2 x0  - x1

\biggr) 
.

With that, \scrK is ROG with respect to the representation induced by \scrA 2 but not with respect
to the representation induced by \scrA 1.

If \scrK is nondegenerate and ROG as a spectrahedral cone (with respect to the representation
given in (3.4)), it is not immediately obvious that \scrK , seen as a hyperbolicity cone, is also ROG
with respect to det\scrA . In the next proposition, we take care of this issue.

Proposition 3.10. Let \scrK (as in (3.4)) be a nondegenerate spectrahedral cone. Then, for
every x \in \scrK we have that rank(x) (computed with respect to det\scrA ) is equal to the rank of the
matrix \scrA (x). In particular, \scrK is an ROG spectrahedral cone (with respect to the representation
induced by \scrA ) if and only if it is an ROG hyperbolicity cone with respect to det\scrA .

Proof. Since \scrK is nondegenerate, there exists \=x such that \scrA (\=x) is positive definite. By
definition, rank(x) (computed with respect to det\scrA ) is equal to the number of nonzero roots
that the 1-dimensional polynomial

t \mapsto \rightarrow det(\scrA (x) - t\scrA (\=x))

has. Now, det : \scrS n \rightarrow \BbbR is a hyperbolic polynomial along the identity matrix, and the
corresponding hyperbolicity cone is \scrS n

+. Therefore, det is also hyperbolic along \scrA (\=x), and
since the rank function does not depend on the hyperbolicity direction ([38, Proposition 22]),
the number of nonzero roots of t \mapsto \rightarrow det(\scrA (x) - t\scrA (\=x)) coincides with the number of nonzero
roots of t \mapsto \rightarrow det(\scrA (x)  - tIn), where In is the n \times n identity matrix. However, the latter
quantity is equal to the usual matrix rank of \scrA (x).

Proposition 3.10 needs to be interpreted carefully. In fact, there are spectrahedral cones
that are hyperbolic ROG, but none of their spectrahedral representations are ROG. So, in
fact, the class of cones that is hyperbolic ROG under some choice of p is strictly larger than
the class of cones that is spectrahedral ROG. This will be illustrated right after we take care
of the following technical lemma.

Lemma 3.11. If \scrK is a spectrahedral cone as in (3.4), then \scrK also has a nondegenerate
spectrahedral representation \scrK = \{ x\in \BbbR m | \^\scrA (x)\in \scrS r

+\} for some r\leq n. Furthemore, \^\scrA can be
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chosen in such a way that \scrK is an ROG spectrahedral cone with respect to \scrA if and only if \scrK 
is an ROG spectrahedral cone with respect to \^\scrA .

Proof. This is a consequence of the facial structure of \scrS n
+, and it is discussed to some

extent in [22, Lemma 2.5], so we will only present a sketch of the proof here. Suppose that
\scrK is a spectrahedral cone as in (3.4), let \scrL \subseteq \scrS n be the space spanned by the Ai, and let F
be the minimal face of \scrS n

+ containing \scrL . With that, \scrL \cap (riF ) \not = \emptyset . Since F is a face of \scrS n
+,

it is linearly isomorphic to a positive semidefinite cone over matrices of size r \leq n. In fact,
more can be said, and there exists an invertible matrix V such that V FV \ast = \{ (A 0

0 0 ) | A\in \scrS r
+\} .

Letting \pi r : \scrS n \rightarrow \scrS r be the map that takes an n \times n symmetric matrix to its upper left
r \times r block, we construct the map \^\scrA : \BbbR m \rightarrow \scrS r given by \^\scrA (x) = \pi r(V\scrA (x)V \ast ). With that,
\scrK = \{ x | \^\scrA (x) \in \scrS r

+\} , and this is a nondegenerate spectrahedral representation of \scrK . By

construction, \scrK is ROG with respect to \scrA if and only if it is ROG with respect to \^\scrA .

Proposition 3.12. For n \geq 3, the (n + 1)-dimensional second-order cone \scrL n+1
2 := \{ x \in 

\BbbR n+1 | x0 \geq 0, x20 \geq x21+ \cdot \cdot \cdot +x2n\} is ROG as a hyperbolicity cone, but none of its spectrahedral
representations are ROG.

Proof. Second-order cones are symmetric cones, so they are ROG hyperbolicity cones by
Proposition 3.8. This can also be shown directly by the well-known fact that \scrL n+1

2 =\Lambda +(p, e),
where p(x) := x20  - x21  - \cdot \cdot \cdot  - x2n and e := (1,0, . . . ,0).

Next, suppose that we have an ROG spectrahedral representation of \scrL n+1
2 so that

\scrL n+1
2 = \{ x\in \BbbR n+1 | \scrA (x)\in \scrS m

+ \} ,

where m\geq 2, \scrA (x) := x0A0+ \cdot \cdot \cdot xnAn with Ai \in \scrS m. In view of Lemma 3.11, we may assume
that the representation is nondegenerate without loss of generality. Then, by Proposition 3.10,
\scrL n+1
2 must be an ROG hyperbolicity cone with respect to det\scrA . By Proposition 3.5, det\scrA 

is a minimal degree polynomial for \scrL n+1
2 and, therefore, must have degree 2. In particular,

the maximum rank that a matrix \scrA (x) can have for x \in \scrL n+1
2 is also 2. Since we assumed

that the spectrahedral representation is nondegenerate, we conclude that m = 2. However,
the dimensions of \scrS 2

+, \scrL n+1
2 are 3 and n+ 1, respectively.

Finally, since \scrL n+1
2 is pointed, \scrA must be injective, so the dimensions of \scrL n+1

2 and \scrA (\scrL n+1
2 )

coincide. As \scrA (\scrL n+1
2 ) is contained in \scrS 2

+, it must be the case that n+ 1 \leq 3. In conclusion,
\scrL n+1
2 cannot have an ROG spectrahedral representation in dimension 4 or higher.

3.2. Automorphisms of ROG hyperbolicity cones. In this subsection, we prove our main
results concerning the automorphisms of ROG hyperbolicity cones and their derivative relax-
ations.

Theorem 3.13 (automorphism groups do not enlarge along derivative relaxations). Let \Lambda + =
\Lambda +(p, e) be a hyperbolicity cone with d := deg p \geq 4 and dim\Lambda + \geq 3. Suppose that \Lambda + is
regular and ROG with respect to p. Then, for k with 1\leq k\leq d - 3 we have

Aut(\Lambda 
(k)
+ )\subseteq Aut(\Lambda +).

Proof. Let \scrF 2 and \scrF (k)
2 be the set of all strictly convex faces with dimension at least 2 of

\Lambda + and \Lambda 
(k)
+ , respectively. An initial observation is that \scrF 2 and \scrF (k)

2 only contain boundary
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faces of \Lambda + and \Lambda 
(k)
+ , respectively. Put, otherwise, that neither \Lambda + nor \Lambda 

(k)
+ are strictly convex

under the assumptions on d and k. This follows, for example, from the proof of Proposition

3.5, where we showed that \Lambda + and \Lambda 
(k)
+ contain chain of faces of length d+ 1 and d - k + 1

(\geq 4), respectively, whereas the longest chain of faces in a strictly convex cone is no longer
than 3.

Next, we will prove that

\scrF 2 =\scrF (k)
2 .

For the ``\subseteq "" inclusion, let F \in \scrF 2, and let x\in riF . Then, x has rank 2 by item (iii) of Lemma

3.3; i.e., it has multiplicity d - 2. By Lemma 2.3, F is a face of \Lambda 
(d - 3)
+ . Furthermore, since the

dimension of F is at least 2, F is not an extreme ray. Recalling that \Lambda 
(d - 3)
+ = (\Lambda 

(k)
+ )(d - k - 3),

applying Lemma 2.2 to \Lambda 
(k)
+ and (\Lambda 

(k)
+ )(d - k - 3) we conclude that the face F (which is not an

extreme ray) must be a face of \Lambda 
(k)
+ . Conversely, let F \in \scrF (k)

2 . Since F has dimension at least
2, Lemma 2.2 implies that F is a face of \Lambda +. Since it is strictly convex, F \in \scrF 2.

Therefore, \scrF 2 = \scrF (k)
2 holds. Now, let A \in Aut(\Lambda 

(k)
+ ). Since A is a bijective linear map, it

preserves strict convexity and the dimension of cones. Therefore A\scrF (k)
2 =\scrF (k)

2 which leads to

(3.6) A\scrF 2 =\scrF 2;

that is, A permutes the set of rank 2 faces of \Lambda +, which is \scrF 2 by items (i) and (iii) of Lemma
3.3.

Let E be an arbitrary extreme ray of \Lambda + which must, by assumption, have rank 1 so that it
is generated by some x\in \Lambda + of rank 1. Since the dimension of \Lambda + is at least 3, there is another
extreme ray generated by some y \in \Lambda + distinct from E. Now, the rank of \Lambda + is d\geq 4, and the
face F (x+ y) has rank 2 (item (ii) of Lemma 3.3), so we have F (x+ y) \not =\Lambda +. In particular,
we can find yet another extreme ray generated by some z \in \Lambda + such that z \not \in F (x+ y). From
Lemma 2.1, we have x, y \in F (x+ y) = F (x, y) and x, z \in F (x+ z) = F (x, z). Since x, y, and z
all generate distinct extreme rays, the dimensions of F (x, y) and F (x, z) are both at least 2.
Then, since both x+ y and x+ z have rank 2 (item (ii) of Lemma 3.3), F (x, y), F (x, z)\in \scrF 2.

An intersection of faces is a face, so F (x, y) \cap F (x, z) contains E and is a face of both
\Lambda + and F (x, z). Since F (x, y)\cap F (x, z) is contained in F (x, z) (which has rank 2), in view of
Lemma 3.3 and the strict convexity of F (x, z), F (x, y)\cap F (x, z) is either F (x, z) or E. Since
z \not \in F (x, y), we conclude that F (x, y)\cap F (x, z) =E.

Then, from (3.6) we have AF (x, y),AF (x, z)\in \scrF 2, and since A is an bijection, we have

A(E) =A(F (x, y)\cap F (x, z)) = (AF (x, y))\cap (AF (x, z)).

In particular, A(E) = (AF (x, y))\cap (AF (x, z)) is a face of \Lambda + (since it is an intersection of
faces) with dimension 1 (since E has dimension 1), so it is an extreme ray of \Lambda +. We conclude
that A maps an extreme ray of \Lambda + to another extreme ray of \Lambda +. Everything we have done
so far also applies to A - 1, so we conclude that A permutes the set of extreme rays of \Lambda +.
Since a pointed closed convex cone is the convex hull of its extreme rays, A must be, in fact,
an automorphism of \Lambda +.
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Next, we will strengthen Theorem 3.13. Our result relies on the following G\r arding in-
equality.

Lemma 3.14 (G\r arding [14, Theorem 5]). Let p : \BbbR n \rightarrow \BbbR be a hyperbolic polynomial along
e, and let d=deg p. Let P (x1, . . . , xd) be the polar form of p:

(3.7) P (x1, . . . , xd) =
1

d!

\partial 

\partial t1
\cdot \cdot \cdot \partial 

\partial td
p(t1x1 + \cdot \cdot \cdot + tdxd)

\bigm| \bigm| \bigm| 
t1=\cdot \cdot \cdot =td=0

=
1

d!
\nabla dp(0)[x1, . . . , xd].

Then, for any x1, . . . , xd \in ri\Lambda +(p, e), we have

p(x1)
1

d \cdot \cdot \cdot p(xd)
1

d \leq P (x1, . . . , xd).

The equality holds if and only if x1, . . . , xd are pairwise proportional modulo \Lambda + \cap ( - \Lambda +).

We can now prove the following result.

Theorem 3.15. Let \Lambda + =\Lambda +(p, e) be a hyperbolicity cone with d := deg p\geq 4 and dim\Lambda + \geq 
3. Suppose that \Lambda + is regular and ROG with respect to p. Then, we have \forall 1\leq k\leq d - 3 that

Aut(\Lambda 
(k)
+ ) = \{ A\in Aut(\Lambda +) | A(\BbbR +e) =\BbbR +e\} ,

where \Lambda 
(k)
+ =\Lambda +(D

k
ep, e) is the kth derivative relaxation of \Lambda + with respect to e.

Proof. We recall that, by Proposition 3.5, p and Dk
ep are minimal degree polynomials for

\Lambda + and \Lambda 
(k)
+ , respectively.

We first prove the ``\supseteq ."" Suppose that A \in Aut(\Lambda +) and Ae = \alpha e for some \alpha > 0. Then,
Proposition 2.6 implies that there exists \kappa > 0 such that

p= \kappa \cdot p \circ A.

Observe that

Dk
ep(x) =

dkp(x+ te)

dtk

\bigm| \bigm| \bigm| 
t=0

=\nabla kp(x)[ek],

where ek stands for the tuple (e, . . . , e) of length k. By taking the kth derivative on the both
sides of p= \kappa \cdot p \circ A and using Ae= \alpha e, we have

Dk
ep(x)\equiv \nabla kp(x)[ek] = \kappa \nabla kp(Ax)[(Ae)k] = \kappa \alpha k\nabla kp(Ax)[ek] = \kappa \alpha k((Dk

ep) \circ A)(x).

Combining with the fact that Ae= \alpha e \in ri\Lambda 
(k)
+ and the minimality of Dk

ep, we invoke Propo-

sition 2.6 in order to conclude that A\in Aut(\Lambda 
(k)
+ ).

Next, we show the ``\subseteq "" inclusion. Let A \in Aut(\Lambda 
(k)
+ ). By Theorem 3.13, we also have

A\in Aut(\Lambda +). So it remains to prove that Ae= \alpha e for some \alpha > 0.
Proposition 2.6 implies that there exist \kappa 1, \kappa 2 > 0 satisfying

p= \kappa 1 \cdot p \circ A, \kappa 2 \cdot Dk
ep= (Dk

ep) \circ A.
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Computing the kth derivative of p= \kappa 1 \cdot p \circ A yields Dk
ep(x) = \kappa 1D

k
e (p \circ A). This leads to

(Dk
ep) \circ A= \kappa 2 \cdot Dk

ep= \kappa 1\kappa 2D
k
e (p \circ A);

in other words,

\nabla kp(Ax)[ek] = \kappa 1\kappa 2\nabla kp(Ax)[(Ae)k] \forall x\in \BbbR n.

As A is nonsingular, we obtain

(3.8) \nabla kp(z)[(Ae)k] = \kappa \nabla kp(z)[ek] \forall z \in \BbbR n,

where \kappa := (\kappa 1\kappa 2)
 - 1 > 0.

Let P (x1, . . . , xd) =\nabla dp(0)[x1, . . . , xd]/d! be the polar form of p as defined in (3.7). Now
setting z = te in (3.8) and calculating dd - k/dtd - k at t= 0 on the both sides, one has

P ((Ae)k, ed - k) =\nabla dp(0)[(Ae)k, ed - k]/d! = \kappa \nabla dp(0)[ed]/d! = \kappa \cdot P (e, . . . , e)
= \kappa \cdot p(e)

d

d (by Lemma 3.14)

= \kappa \kappa 
k

d

1 \cdot p(e)
d - k

d p(Ae)
k

d(3.9)

\leq \kappa \kappa 
k

d

1 P ((Ae)
k, ed - k) (by Lemma 3.14).

Dividing both sides by P ((Ae)k, ed - k) (= \kappa \cdot p(e)> 0), we see that

\kappa \kappa 
k

d

1 \geq 1.

Similarly, setting z = tAe in (3.8) and calculating dd - k/dtd - k at t= 0 on the both sides, one
has

\kappa P (ek, (Ae)d - k) = \kappa \nabla dp(0)[ek, (Ae)d - k]/d! =\nabla dp(0)[(Ae)d]/d! = P (Ae, . . . ,Ae)

= p(Ae)
d

d (by Lemma 3.14)

= \kappa 
 - k

d

1 p(e)
k

d p(Ae)
d - k

d

\leq \kappa 
 - k

d

1 P (ek, (Ae)d - k) (by Lemma 3.14).

Since \kappa P (ek, (Ae)d - k) = p(Ae) = p(e)/\kappa 1 is positive, this yields \kappa \kappa 
k

d

1 \leq 1, and so \kappa \kappa 
k

d

1 = 1
holds. Then, (3.9) becomes

P ((Ae)k, ed - k) = p(e)
d - k

d p(Ae)
k

d .

By Lemma 3.14 and the pointedness of \Lambda +, this occurs only when Ae= \alpha e for some \alpha > 0.

The restrictions on d and k in Theorem 3.15 only leave out the derivative relaxations such
that Dk

ep has degree less than or equal to 2. Also, the ROG assumption is essential for our
results. In the next example, we see that our results do not hold for the \ell 1-cone.
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Example 3.16 (\ell 1-cone). Consider the \ell 1-cone in \BbbR 3

\{ x\in \BbbR 3| x3 \geq | x1| + | x2| \} = \{ x| x3 + ( - 1)ix1 + ( - 1)jx2 \geq 0\forall i, j \in \{ 0,1\} \} ,

which is a hyperbolicity cone \Lambda + =\Lambda +(p, e) with

p(x) = (x3 + x1 + x2)(x3 + x1  - x2)(x3  - x1 + x2)(x3  - x1  - x2), e= (0,0,1)T .

The polynomial p is of minimal degree defining \Lambda +. Indeed, note that any minimal degree
polynomial, say q, must be a divisor of p in the polynomial ring \BbbR [x] by Proposition 2.5.
Since polynomials of degree 1 are irreducible and \BbbR [x] is, in particular, an unique factorization
domain, q must be a product of some of the four linear polynomials pij(x) = x3 + ( - 1)ix1 +
( - 1)jx2 and a constant. In particular, \Lambda +(q, e) is the intersection of the corresponding half-
spaces pij(x)\geq 0, which coincides with \Lambda +(p, e) only when p= \kappa q for some constant \kappa .

We remark that \Lambda + is not ROG since every extreme ray of \Lambda + has rank 2. The derivatives
of p are given by

Dep(x) = 4x3(x
2
3  - x21  - x22), D2

ep(x) = 4(3x23  - x21  - x22).

The derivative relaxation \Lambda 
(1)
+ is the second-order cone in \BbbR 3, and the factor x3 in Dep is

redundant; in particular Dep(x) is not of minimal degree and shows that Proposition 3.5 may

fail if the cone is not ROG. Since \Lambda 
(1)
+ is a symmetric cone, for any \^e \in ri\Lambda 

(1)
+ , there exists

A \in Aut(\Lambda 
(1)
+ ) such that Ae = \^e. In addition, ri\Lambda + \subseteq ri (\Lambda 

(1)
+ ), which is a consequence of the

interlacing properties between the eigenvalues with respect to p and Dep, e.g., [38, section 4].

Since \Lambda + \not =\Lambda 
(1)
+ , there exists \^e\in ri\Lambda 

(1)
+ such that \^e \not \in \Lambda +.

Letting A\in Aut(\Lambda 
(1)
+ ) be such that Ae= \^e, A does not fix e or belong to Aut(\Lambda +), which

shows that both Theorems 3.13 and 3.15 fail for the \ell 1-cone.

Generalized Perron--Frobenius theorem and a converse of Theorem 3.15. Theorem 3.15 tells
us that, subject to a condition on k, automorphisms of the kth derivative relaxation of a
regular ROG hyperbolicity cone are the automorphisms of the original cone that have the
hyperbolic direction e as an eigenvector. We will close this section with a converse of sorts.
We will show that, reciprocally, every automorphism of an ROG hyperbolicity cone must
already be the automorphism of some derivative relaxation. The caveat is that the derivative
relaxation in which the automorphism will be found may be a relaxation of a face of the cone.

In order to do that, we need a discussion on the generalized Perron--Frobenius theorem.
The classical Perron--Frobenius theorem implies that a nonzero n\times n nonnegative matrix has
a nonnegative eigenvector associated to a positive eigenvalue. This can be summarized by
saying that the condition A\BbbR n

+ \subseteq \BbbR n
+ (i.e., A is nonnegative) implies that A has an eigenvector

that belongs to \BbbR n
+ as well. This result has several generalizations where \BbbR n

+ is replaced with
an arbitrary closed convex cone; see [47, 3] and [6, Chapter 1]. In particular, the following
holds.

Theorem 3.17 ([47, Theorem 3.1]). Let \scrK \subseteq \BbbR n be a regular closed convex cone, and
suppose that A is a n\times n real matrix satisfying A\scrK \subseteq \scrK . Then, \scrK contains an eigenvector of
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254 MASARU ITO AND BRUNO F. LOUREN\c CO

A corresponding to the spectral radius of A (i.e., the maximum of the absolute values of the
eigenvalues of A).

An immediate consequence of Theorem 3.17 is that if A is an automorphism of \scrK , then A
has an eigenvector contained in \scrK . In fact, a bit more can be said about this.

Proposition 3.18. Let \scrK \subseteq \BbbR n be a regular closed convex cone, and let A\in Aut(\scrK ). If z \in \scrK 
is an eigenvector of A, then A(F (z)) = F (z). Put, otherwise, that A\in Aut(F (z)) holds.

Proof. A is an automorphism, so AF (z) must be a face of \scrK as well. Since A is a linear
map, ri (A(F (z))) = A(riF (z)) holds, e.g., [39, Theorem 6.6]. Then, since z \in riF (z) (see
(2.2)) and z is an eigenvector of A (which is associated to a positive eigenvalue since \scrK is
pointed), we obtain that z \in ri (AF (z)). We conclude that the relative interiors of the faces
F (z) and A(F (z)) intersect, so they must coincide by (2.1), i.e., AF (z) = F (z).

Gathering everything, we obtain the following converse of Theorem 3.15.

Theorem 3.19. Let \Lambda + = \Lambda +(p, e) \subseteq \BbbR n be a regular ROG hyperbolicity cone, and let
A \in Aut(\Lambda +). Let z \in \Lambda + be an eigenvector of A (at least one exists by Theorem 3.17), and
let F (z)�\Lambda + be the minimal face of \Lambda + that contains z. The following statements hold:

(i) A\in Aut(F (z)).
(ii) Let m be the multiplicity of z with respect to p and let q be as in Proposition 3.6 so

that F (z) = \Lambda +(q, z). If d - m\geq 4, then, for 1\leq k\leq d - m - 3, we have

A\in Aut(\Lambda 
(k)
+ (q, z)),

where \Lambda 
(k)
+ (q, z) is the kth derivative relaxation of \Lambda +(q, z) along the direction z.

Proof. Item (i) follows from Proposition 3.18, so we move on to item (ii).
In view of Propositions 3.6 and 3.7, F is ROG with respect to q and z. Since \Lambda + is

pointed, F is also pointed, so, with respect to spanF , F is a regular ROG hyperbolicity cone.
Therefore, we can apply Theorem 3.15 to \Lambda +(q, z), which leads to

Aut(\Lambda 
(k)
+ (q, z)) = \{ \^A\in Aut(\Lambda +(q, z)) | \^A(\BbbR +z) =\BbbR +z\} 

for k satisfying 1 \leq k \leq d  - m  - 3. In particular, since z is an eigenvector of A and \Lambda + is

pointed, we have A(\BbbR +z) =\BbbR +z, so A\in Aut(\Lambda 
(k)
+ (q, z)) holds.

Theorems 3.15 and 3.19 taken together can be summarized as follows. The automor-
phisms of the derivative relaxations of order 1 \leq k \leq d  - 3 of a regular ROG hyperbolicity
cone \Lambda +(p, e) are exactly the automorphisms of \Lambda +(p, e) which have e as an eigenvector.
Conversely, in view of Proposition 3.18, every automorphism A of \Lambda +(p, e) must also be an
automorphism of at least one nonzero face F of \Lambda +(p, e) containing an eigenvector z of A
in its relative interior. Such a face is also a hyperbolicity cone (Proposition 3.6), and A
must also be an automorphism of the derivative relaxations of order 1 \leq k \leq d - m - 3 of F
along z.

The case where m= 0 in Theorem 3.19 is noteworthy. In this case, the automorphism A
has an eigenvector z in the interior of \Lambda +(p, e), and the derivative relaxations that appear in
Theorem 3.19 are relaxations of the original cone \Lambda +(p, e) along the interior direction z.
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AUTOMORPHISMS OF ROG HYPERBOLICITY CONES 255

Furthermore, if A has a single eigenvector z in \Lambda + (up to scalar multiples) and z is in the
interior of \Lambda +, then [47, Theorem 4.2] or [6, Chapter 1, Theorem 3.16] implies that A is what is
called a \Lambda +-irreducible matrix , which means that for a face F �\Lambda + then AF \subseteq F never holds
except for F = \{ 0\} or F =\Lambda +. The notion of a \scrK -irreducible matrix for an arbitrary cone \scrK 
generalizes the concept of irreducible matrix that appears in the classical Perron--Frobenius
theory. In our particular case, since A is an automorphism, \Lambda +-irreducibility means that A
permutes the set of faces of \Lambda + but fixes no face except the trivial ones \{ 0\} and \Lambda +.

4. Applications. In this section, we collect a few applications of the results so far.

4.1. Automorphisms of R
\bfitn ,(\bfitk )
+ and \bfscrS \bfitn ,(\bfitk )

+ . In this subsection, we take a closer look
at the derivative relaxations of \BbbR n

+ and \scrS n
+. These cones and other closely related objects

form an interesting test-bed for ideas and conjectures about hyperbolic polynomials and have
been studied by many authors [50, 41, 7, 44, 42, 28], with quite a few works devoted to
questions related to their spectrahedral representability in connection with the generalized
Lax conjecture.

The nonnegative orthant \BbbR n
+ can be realized as a hyperbolicity cone as follows:

\BbbR n
+ =\Lambda +(p, e), p(x) = x1x2 \cdot \cdot \cdot xn, e= (1,1, . . . ,1)T .

Then, the following fact is well known:3

Aut(\BbbR n
+) = \{ Diag(c1, . . . , cn)P | c1, . . . , cn > 0, P is a permutation matrix\} .

The derivative Dk
ep(x) for k\geq 0 is a positive multiple of the elementary symmetric polynomial

of degree n - k, that is,

Dk
ep(x) = k!sn - k(x), where sd(x) =

\sum 
1\leq i1<\cdot \cdot \cdot <id\leq n

xi1 \cdot \cdot \cdot xid .

By (2.5), the kth derivative relaxation \BbbR n,(k)
+ := \Lambda 

(k)
+ has the description

(4.1) \BbbR n,(k)
+ = \{ x\in \BbbR n | si(x)\geq 0, i= 1, . . . , n - k\} , k= 1, . . . , n - 1.

We remark that \BbbR n,(n - 1)
+ for n\geq 2 is the half-space \{ x\in \BbbR n | x1 + \cdot \cdot \cdot + xn \geq 0\} .

Moreover, \BbbR n,(n - 2)
+ is linearly isomorphic to the Lorentz cone \scrL n

2 as Dn - 2
e p is quadratic

and the corresponding matrix has one positive eigenvalue and n - 1 negative eigenvalues (see
[5, page 486] for a related discussion). In particular, the automorphism group of \scrL n

2 has the
following characterization [32]: For A\in GLn(\BbbR ), we have

(4.2) A\scrL n
2 =\scrL n

2 or A\scrL n
2 = - \scrL n

2 \Leftarrow \Rightarrow ATJA= \mu J for some \mu > 0,

3This follows from the fact that an automorphism of \BbbR n
+ must permute the n extreme rays of \BbbR n

+ and that
those extreme rays are generated by the usual coordinate basis e1, . . . , en. Alternatively, since \BbbR n

+ is the direct
product of n copies of \BbbR +, the result can be derived from general results on automorphisms of direct sums of
cones; see [23, section 4 and Lemma 4.1].
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256 MASARU ITO AND BRUNO F. LOUREN\c CO

where J = Diag( - 1,1, . . . ,1). Now let \^J \in \scrS n be the symmetric matrix satisfying s2(x) =

xT \^Jx. For \BbbR n,(n - 2)
+ = \{ x | s2(x) \geq 0, s1(x) \geq 0\} = \{ x | xT \^Jx \geq 0, eTx \geq 0\} , one has the

following characterization: for A\in GLn(\BbbR ),

(4.3) A\BbbR n,(n - 2)
+ =\BbbR n,(n - 2)

+ or A\BbbR n,(n - 2)
+ = - \BbbR n,(n - 2)

+ \Leftarrow \Rightarrow AT \^JA= \mu \^J for some \mu > 0.

In fact, by Sylvester's law of inertia, there exists B \in GLn(\BbbR ) such that \^J = BTJB, which
yields the relation

\scrL n
2 \cup  - \scrL n

2 = \{ x | xTJx\geq 0\} =B\{ x | xT \^Jx\geq 0\} =B(\BbbR n,(n - 2)
+ \cup  - \BbbR n,(n - 2)

+ ).

The characterization (4.3) follows by this relation combined with (4.2).

The next result determines the structure of Aut(\BbbR n,(k)
+ ) for k= 1, . . . , n - 3.

Theorem 4.1. For n\geq 4 and k= 1, . . . , n - 3, we have

Aut(\BbbR n,(k)
+ ) = \{ \alpha P | \alpha > 0, P is a permutation matrix\} .

Proof. The extreme rays of \BbbR n
+ consist of the rays generated by the coordinate basis

e1, . . . , en, and the hyperbolicity cone \BbbR n
+ is ROG with respect to p(x) = x1x2 \cdot \cdot \cdot xn and

e= (1, . . . ,1)T . By Theorem 3.15, for k= 1, . . . , n - 3 we have

Aut(\BbbR n,(k)
+ ) = \{ A\in Aut(\BbbR n

+) | A(\BbbR +e) =\BbbR +e\} .

If A = \alpha P for \alpha > 0 and P being a permutation matrix, since A(e) = \alpha Pe = \alpha e, we have

A\in Aut(\BbbR n,(k)
+ ).

Conversely, let A\in Aut(\BbbR n,(k)
+ ). Then, A\in Aut(\BbbR n

+) and so

A=Diag(c1, . . . , cn)P

for some c1, . . . , cn > 0 and a permutation matrix P . Since A(\BbbR +e) =\BbbR +e, there exists \alpha > 0
such that Ae= \alpha e and thus

(\alpha , . . . ,\alpha ) = \alpha e=Ae=Diag(c1, . . . , cn)Pe=Diag(c1, . . . , cn)e= (c1, . . . , cn).

This implies that c1 = \cdot \cdot \cdot = cn = \alpha , i.e., A= \alpha P .

Next, we analyze the automorphisms of the derivative relaxations of the cone of positive
semidefinite matrices \scrS n

+, which is an ROG hyperbolicity cone realized as

\scrS n
+ =\Lambda +(P, In), P (X) = detX,

where In is the n\times n identity matrix.
First, we need a discussion on linear operators of \scrS n. Here we remark that, if L : \scrS n \rightarrow \scrS n

is a linear operator, L might be completely oblivious to the underlying matrix structure. In
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AUTOMORPHISMS OF ROG HYPERBOLICITY CONES 257

particular, even if L is a bijection, it is not necessarily the case that L maps nonsingular
matrices to nonsingular matrices.4

In contrast, a family of linear operators that do preserve the rank is given by the operators
LM : \scrS n \rightarrow \scrS n defined by

(4.4) LM (X) :=MXM\ast \forall X \in \scrS n,

where M is a fixed nonsingular matrix M \in GLn(\BbbR ) and M\ast is its adjoint. In what follows
we say that L is rank 1 preserver if L(X) has rank 1 whenever X \in \scrS n has rank 1. Then,
a remarkable (but perhaps not widely known) result tells us that the operators of the form
\pm LM are the only linear bijections that are rank 1 preservers.

Theorem 4.2 (Lim [31, Theorem 10] and Waterhouse [49, Theorem 11]). Let L : \scrS n \rightarrow \scrS n be
a bijective linear operator that is a rank 1 preserver. Then, there exist a nonsingular matrix
M \in GLn(\BbbR ) and nonzero scalar \alpha such that L= \alpha LM .

We now have all the tools necessary to prove the following result.

Theorem 4.3. For n\geq 4 and k with 1\leq k\leq n - 3, we have

Aut(\scrS n,(k)
+ ) = \{ \alpha LQ | \alpha > 0,Q is an n\times n orthogonal matrix\} .

Proof. The positive semidefinite cone \scrS n
+ is an ROG hyperbolicity cone generated by the

determinant polynomial along the direction In, where In is the n \times n identity matrix. By
Theorem 3.15, we have

Aut(\scrS n,(k)
+ ) = \{ L\in Aut(\scrS n

+) | L(\BbbR +In) =\BbbR +In\} .

A map of the form \alpha LQ with \alpha > 0, Q orthogonal is an automorphism of \scrS n
+ that satisfies the

condition \alpha LQ(\BbbR +In) =\BbbR +In, so this shows the ``\supseteq "" inclusion.

Next, we prove the converse. Let L be an automorphism of Aut(\scrS n,(k)
+ ). In particular, it

must be an automorphism of \scrS n
+. The extreme rays of \scrS n

+ are generated by rank 1 matrices, so
an automorphism of \scrS n

+ must be a rank 1 preserver. Theorem 4.2 then implies that L= \alpha LM

for some nonzero scalar \alpha and matrix M \in GLn(\BbbR ) as in (4.4). Since \scrS n
+ is pointed, \alpha must

be positive, and rescaling M if necessary, we may assume that \alpha = 1. However, the condition
L(\BbbR +In) =\BbbR +In implies that there exists \kappa > 0 such that

MM\ast = \kappa In;

that is, Q :=M/
\surd 
\kappa is an orthogonal matrix, and \kappa LQ =LM =L.

The derivative relaxations of \scrS n,(k)
+ and \BbbR n,(k)

+ are intimately connected as follows (cf. (4.1)
and [38, equation (3)]). For a symmetric matrix X \in \scrS n, let \lambda (X) denote the eigenvalue map
\lambda (X) = (\lambda 1(X), . . . , \lambda n(X)). Then,

(4.5) \scrS n,(k)
+ = \lambda  - 1(\BbbR n,(k)

+ ) = \{ X \in \scrS n | \lambda (X)\in \BbbR n,(k)
+ \} , k\geq 0.

4Consider, for example, the bijective linear map L that takes ( a b
b c ) to ( b a

a c ). The rank 2 matrix ( 0 1
1 0 ) gets

mapped to the rank 1 matrix ( 1 0
0 0 ).
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That is, \scrS n,(k)
+ is the spectral cone generated by \BbbR n,(k)

+ . In view of Theorems 4.1 and 4.3, a
natural question is how to relate the automorphism groups of a spectral cone and its underlying
permutation invariant subset. We conclude this subsection with a detour on this topic.

Automorphisms of spectral cones. We say that a set C \subseteq \BbbR n is permutation invariant if for
every permutation matrix P we have PC =C. The spectral set associated to C is given by

\lambda  - 1(C) := \{ X \in \scrS n | \lambda (X)\in C\} .

Spectral sets and functions over symmetric matrices and, more generally, over Euclidean
Jordan algebras have been studied in quite detail in several works; e.g., see [30, 2, 45, 24, 25]
and many others. Still, to the best of our knowledge, the following result connecting Aut(\scrK )
and Aut(\lambda  - 1(\scrK )) seems to be novel.

Theorem 4.4. Let \scrK be a permutation invariant closed convex cone, and let L\in Aut(\lambda  - 1(\scrK )).
Then, the following statements hold:

(i) Suppose that L = \alpha LM for some M \in GLn(\BbbR ) and \alpha \in \{  - 1,1\} . If D is a diagonal
matrix corresponding to the singular values of M in any order, then \alpha D2 \in Aut(\scrK ).

(ii) If L is a rank 1 preserver, then L= \alpha LM for some M \in GLn(\BbbR ) and \alpha \in \{  - 1,1\} . If
\scrK is nonzero and pointed, then \alpha = 1.

Proof. We start with item (i). We write the singular value decomposition of M as
M = UDV so that D is a diagonal matrix containing the singular values of M and U,V
are orthogonal matrices. Since \lambda  - 1(\scrK ) is a spectral cone and U,V are orthogonal, both LU

and LV belong to Aut(\lambda  - 1(\scrK )). We have

U\lambda  - 1(\scrK )U\ast = \lambda  - 1(\scrK ) = \alpha UDV \lambda  - 1(\scrK )V \ast DU\ast = \alpha UD\lambda  - 1(\scrK )DU\ast .

Therefore, \lambda  - 1(\scrK ) = \alpha D\lambda  - 1(\scrK )D. That is, \alpha LD \in Aut(\lambda  - 1(\scrK )).
Let x\in \scrK ; then Diag(x)\in \lambda  - 1(\scrK ). Therefore

\alpha DDiag(x)D= \alpha D2Diag(x) =Diag(\alpha D2x)\in \lambda  - 1(\scrK ).

This implies that \alpha D2x\in \scrK , that is, \alpha D2\scrK \subseteq \scrK . Now, recall that Aut(\lambda  - 1(\scrK )) is a group, so
L - 1 = \alpha LM - 1 is an automorphism of \lambda  - 1(\scrK ) as well. Observing that all we have done so far
also applies to L - 1, we conclude that \alpha D - 2\scrK \subseteq \scrK and that \alpha D2 \in Aut(\scrK ). This concludes
the proof of item (i).

Since \alpha LM = \alpha /| \alpha | L
M
\surd 

| \alpha | , the first half of item (ii) is a direct consequence of Theorem

4.2 so that \alpha and M can be normalized in a way that \alpha \in \{  - 1,1\} . Next, suppose that \scrK 
is nonzero and pointed. Then, [24, Lemma 7.2] tells us that either e = (1,1, . . . ,1)T or  - e
belongs to \scrK but not both. So let f \in \scrK be e in the former case and  - e in the latter. Since
\alpha D2 \in Aut(\scrK ) (by item (i)), we have that \alpha D2f belongs to \scrK as well. Let Sym(n) denote the
group of n\times n permutation matrices. Because \scrK is convex we have that

z :=
1

| Sym(n)| 
\sum 

P\in \mathrm{S}\mathrm{y}\mathrm{m}(n)

P (\alpha D2f)
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belongs to \scrK as well. Since Pz = z holds for every P \in Sym(n), all components of z are the
same and equal to a positive multiple of the sum of components of \alpha D2f . For the sake of
obtaining a contradiction, suppose that \alpha =  - 1. Then, the components of \alpha D2f have the
opposite sign of the components of f, and z is of the form \beta f , where \beta < 0. Since \scrK is a cone,
this implies that both f and  - f belong to \scrK which contradicts the fact that \scrK is pointed.
We conclude that \alpha = 1.

Remark 4.5 (automorphisms of \scrS n,(k)
+ and \BbbR n,(k)

+ revisited). Theorems 4.4 and 3.13 are
enough to prove Theorem 4.3 without making use of Theorem 3.15. A sketch of this is as
follows. For n\geq 4 and k such that 1\leq k\leq n - 3, Theorem 3.13 implies that an automorphism

A of \scrS n,(k)
+ is an automorphism of \scrS n

+. Then, since the extreme rays of \scrS n
+ correspond to

rank 1 matrices, A must be a rank 1 preserver, so, by Theorem 4.2, it is of the format LM

for some M \in GLn(\BbbR ). From Theorem 4.4 and (4.5), the diagonal matrix D containing the

singular values of M is such that D2 \in Aut(\BbbR n,(k)
+ ). However, by Theorem 4.1, the only

diagonal matrix in Aut(\BbbR n,(k)
+ ) is the multiples of the identity matrix. So, the singular values

of M are all equal, which implies that M is of the format \alpha LQ for \alpha > 0 and Q being some
orthogonal matrix. Conversely, suppose that L is a linear map of the form \alpha LQ. In view of

(4.5), membership on \scrS n,(k)
+ only depends on the eigenvalues of the matrix, so \alpha LQ indeed

belongs to Aut(\scrS n,(k)
+ ).

Remark 4.6 (related results). Let C \subseteq \BbbR n be a closed cone (not necessarily convex), and let
\scrK C := \{ 

\sum 
uuT | u\in C\} \subseteq \scrS n, where

\sum 
uuT denotes a finite sum of matrices of the form uuT .

Then, \scrK C is called the completely positive cone generated by C, and it is always convex. For
example, if C = \BbbR n, then \scrK C = \scrS n

+, and if C = \BbbR n
+, then \scrK C is the usual cone of completely

positive matrices. The completely positive cone construction is yet another way of obtaining
a matrix cone from a vector cone. Gowda, Sznajder, and Tao showed in [16] how to relate
the automorphism groups of C, C \cup  - C, and \scrK C under appropriate assumptions. We note
that, similarly, the results of Lim and Waterhouse played an important role in the proof of
[16, Theorem 1].

4.2. Nonhomogeneity and the Lyapunov rank. As mentioned in section 1, at least from
the optimization point of view, hyperbolicity cones can be seen as a natural step after sym-
metric and homogeneous cones. Here, we recall that a closed convex cone \scrK is said to be
homogeneous if Aut(\scrK ) acts transitively on the relative interior of \scrK ; i.e., for any x, y \in ri\scrK ,
there exists A\in Aut(\scrK ) such that Ax= y. With that, we can prove the following.

Corollary 4.7. Let \Lambda +(p, e) be a a regular hyperbolicity cone that is ROG with respect to p.

Then \Lambda 
(k)
+ (p, e) is not homogeneous for 1\leq k\leq d - 3.

Proof. Theorem 3.15 implies that every automorphism of \Lambda 
(k)
+ for k= 1, . . . , d - 3 must fix

the direction e, so there is no room for the automorphisms of \Lambda 
(k)
+ (p, e) to act transitively.

Corollary 4.7 implies that \BbbR n,(k)
+ and \scrS n,(k)

+ are not homogeneous for k= 1, . . . , n - 3. And,
in general, the informal conclusion is that derivative relaxations can be significantly poorer in
automorphisms when compared with the original cone.
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Recalling section 1, the Lyapunov rank \beta (\scrK ) of a cone \scrK is the dimension of the Lie algebra
of the automorphism group of \scrK [17, 18, 34]. The Lie algebra corresponds to the tangent space
at the identity element, so the Lyapunov rank is simply the dimension of Aut(\scrK ) as a smooth
manifold. With this in mind, the next corollary gives a quantitative statement regarding how

small the automorphism groups of \BbbR n,(k)
+ and \scrS n,(k)

+ are for k= 1, . . . , n - 3.

Corollary 4.8 (Lyapunov rank of derivative relaxations of \BbbR n
+ and \scrS n

+). For n \geq 4 and
k= 1, . . . , n - 3, we have

\beta (\BbbR n,(k)
+ ) = 1, \beta (\scrS n,(k)

+ ) =
n2  - n+ 2

2
.

Proof. From Theorem 4.1, the automorphisms of \BbbR n,(k)
+ are of the form \gamma P , where \gamma > 0

and P is a permutation matrix. By continuity, a differentiable curve \alpha : ( - \epsilon , \epsilon )\rightarrow Aut(\BbbR n,(k)
+ )

passing through the identity element at \alpha (0) must be confined to the 1-dimensional ray \{ \gamma I | 
\gamma > 0\} for sufficiently small \epsilon , where I is the n \times n identity matrix. This implies that the

tangent space at the identity has dimension 1, so \beta (\BbbR n,(k)
+ ) = 1.

Next, we turn our attention to \scrS n,(k)
+ . Consider the Lie group \scrG :=\BbbR ++\times O(n), which is the

direct product of \BbbR ++, the multiplicative group of positive reals, and O(n), the group of n\times n
real orthogonal matrices. Then, we define the Lie group homomorphism \psi : \scrG \mapsto \rightarrow Aut(\scrS n,(k)

+ )
given by

\psi (\gamma ,Q) := \gamma LQ,

where \gamma \in \BbbR ++, Q\in O(n) and LQ is as in (4.4). Denote the kernel of \psi by ker\psi . By Theorem

4.3, \psi is surjective. Therefore, the quotient group \scrG /ker\psi is diffeomorphic to Aut(\scrS n,(k)
+ );

e.g., see [29, Theorem 21.27]. However, the dimension of \scrG /ker\psi is given by

dim(\scrG ) - dim(ker\psi );

e.g., see [29, Theorem 21.17]. Furthermore, ker\psi = \{ (1, I), (1, - I)\} holds,5 which is a discrete

subgroup of \scrG , so its manifold dimension is 0. We conclude that the dimension of Aut(\scrS n,(k)
+ )

coincides with the dimension of \scrG . The group O(n) has dimension n(n  - 1)/2 (e.g., [29,

Example 7.28]), and \BbbR ++ has dimension 1, which leads to the formula \beta (\scrS n,(k)
+ ) = n2 - n+2

2 .

The Lyapunov ranks of \BbbR n
+ and \scrS n

+ are n and n2, respectively; see [17, page 166]. They
are also examples of perfect cones [17, Theorem 6]. A necessary and sufficient condition for a
regular cone \scrK to be perfect is that \beta (\scrK ) \geq dim\scrK [35, Theorem 1]. From Corollary 4.8, for
n \geq 4 and k = 1, . . . , n - 3, the kth derivative relaxations of \BbbR n

+ and \scrS n
+ are also not perfect.

This is yet another way in which the automorphism group of derivative relaxations can be
much poorer than that of the original cone.

5This can be seen by noticing that if (\lambda ,Q) \in ker\psi , then \lambda QIQ\ast = I holds so that \lambda = 1. Then, letting
ei \in \BbbR n denote the ith coordinate vector we have Qeie

T
i Q

\ast = eie
T
i , which implies that the ith column of Q must

be \pm ei. Finally, if the nonzero elements in two columns i, j of Q have a different sign, then Q(eie
T
j +eje

T
i )Q

\ast =
 - (eie

T
j + eje

T
i ) \not = eie

T
j + eje

T
i . We conclude that Q=\pm I.
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5. Some open questions. In this paper, we proved basic results for ROG hyperbolicity
cones and provided a formula that relates the automorphism group of a regular ROG cone
with the automorphism group of its derivative relaxations. We then applied the results to
compute the automorphisms of derivative relaxations of \BbbR n

+ and \scrS n
+. We conclude this work

with a few open questions.
\bullet Are homogeneous cones ROG? G\"uler showed in [19] that homogeneous cones are in-

deed hyperbolicity cones. However, it is not clear whether they are also ROG.
\bullet For which class of hyperbolicity cones does the formula in Theorem 3.15 hold? It

might be interesting to examine whether Theorem 3.15 (or, more modestly, Theorem
3.13) can be extended beyond ROG hyperbolicity cones. Example 3.16 already points
to some of the difficulties in this task. The \ell 1-cone is, in a sense, the next best thing
after an ROG cone since all the extreme rays still have the same rank. Nevertheless,
Theorem 3.13 does not hold for it. One of the difficulties is that, in general, even if p
is a minimal polynomial for \Lambda + = \Lambda +(p, e), it is not necessarily the case that Dep is

a minimal polynomial for \Lambda 
(1)
+ . When this happens, the automorphism group of \Lambda 

(1)
+

might enlarge instead of shrink.
With regard to the second question, we observe that the proof of the first half of Theorem
3.15 leads to the following partial result.

Proposition 5.1. Let \Lambda + =\Lambda +(p, e) be a hyperbolicity cone with d := deg p and dim\Lambda + \geq 3.
Let k satisfy 1\leq k\leq d - 2, and suppose that p and Dk

ep are minimal polynomials for \Lambda + and

\Lambda 
(k)
+ , respectively. Then

Aut(\Lambda 
(k)
+ )\supseteq \{ A\in Aut(\Lambda +) | A(\BbbR +e) =\BbbR +e\} .

Proof. It is the exact same proof of the ``\supseteq "" inclusion in Theorem 3.15. This proof only
depends on the minimality of p, Dk

ep and uses Proposition 2.6, which does not require that
the cone be ROG or regular.

Acknowledgments. We thank the referees for their comments, which helped to improve
the paper.
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