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Abstract
We construct a general framework for deriving error bounds for conic feasibility
problems. In particular, our approach allows one to work with cones that fail to be
amenable or even to have computable projections, two previously challenging barriers.
For the purpose, we first show how error bounds may be constructed using objects
called one-step facial residual functions. Then, we develop several tools to compute
these facial residual functions even in the absence of closed form expressions for
the projections onto the cones. We demonstrate the use and power of our results by
computing tight error bounds for the exponential cone feasibility problem. Interest-
ingly, we discover a natural example for which the tightest error bound is related to
the Boltzmann–Shannon entropy. We were also able to produce an example of sets
for which a Hölderian error bound holds but the supremum of the set of admissible
exponents is not itself an admissible exponent.
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1 Introduction

Our main object of interest is the following convex conic feasibility problem:

find x ∈ (L+ a) ∩K, (Feas)

where L is a subspace contained in some finite-dimensional real Euclidean space E ,
a ∈ E and K ⊆ E is a closed convex cone. For a discussion of some applications
and algorithms for (Feas) see [22]. See also [5] for a broader analysis of convex
feasibility problems. We also recall that a conic linear program (CLP) is the problem
of minimizing a linear function subject to a constraint of the form described in (Feas).
In addition, when the optimal set of a CLP is non-empty it can be written as the
intersection of a cone with an affine set. This provides yet another motivation for
analyzing (Feas): to better understand feasible regions and optimal sets of conic linear
programs. Here, our main interest is in obtaining error bounds for (Feas). That is,
assuming (L+ a) ∩ K �= ∅, we want an inequality that, given some arbitrary x ∈ E ,
relates the individual distances d(x,L+ a), d(x,K) to the distance to the intersection
d(x, (L + a) ∩ K). Considering that E is equipped with some norm ‖ · ‖ induced by
some inner product 〈·, ·〉, we recall that the distance function to a convex set C is
defined as follows:

d(x, C):= inf
y∈C

‖x− y‖.

When K is a polyhedral cone, the classical Hoffman’s error bound [23] gives a
relatively complete picture of theway that the individual distances relate to the distance
to the intersection. IfK is not polyhedral, but L+a intersectsK in a sufficiently well-
behaved fashion (say, for example, when L + a intersects riK, the relative interior
of K; see Proposition 2.2), we may still expect “good” error bounds to hold, e.g., [6,
Corollary 3]. However, checking whether L + a intersects riK is not necessarily a
trivial task; and, in general, (L+ a) ∩ riK can be void.

Here, we focus on error bound results that do not require any assumption on the
way that the affine space L + a intersects K. So, for example, we want results that
are valid even if, say, L + a fails to intersect the relative interior of K. Inspired by
Sturm’s pioneering work on error bounds for positive semidefinite systems [50], the
class of amenable cones was proposed in [34] and it was shown that the following
three ingredients can be used to obtain general error bounds for (Feas): (i) amenable
cones, (ii) facial reduction [13, 45, 52] and (iii) the so-called facial residual functions
(FRFs) [34, Definition 16].

In this paper, we will show that, in fact, it is possible to obtain error bounds for
(Feas) by using the so-called one-step facial residual functions directly in combination
with facial reduction. It is fair to say that computing the facial residual functions is the

123



Error bounds, facial residual functions and...

most critical step in obtaining error bounds for (Feas).Wewill demonstrate techniques
that are readily adaptable for the purpose.

All the techniques discussed here will be showcased with error bounds for the
so-called exponential cone which is defined as follows1:

Kexp :=
{
(x, y, z) ∈ R

3 | y > 0, z ≥ yex/y
}
∪ {(x, y, z) | x ≤ 0, z ≥ 0, y = 0} .

Put succinctly, the exponential cone is the closure of the epigraph of the perspective
function of z = ex . It is quite useful in entropy optimization, see [15]. Furthermore,
it is also implemented in the MOSEK package, see [17], [37, Chapter 5], and the
many modelling examples in Sect. 5.4 therein. There are several other solvers that
either support the exponential cone or convex sets closely related to it [16, 25, 39, 41].
See also [20] for an algorithm for projecting onto the exponential cone. So convex
optimization with exponential cones is widely available even if, as of this writing, it
is not as widespread as, say, semidefinite programming.

The exponential cone Kexp appears, at a glance, to be simple. However, it possesses
a very intricate geometric structure that illustrates a wide range of challenges practi-
tioners may face in computing error bounds. First of all, being non-facially-exposed, it
is not amenable, so the theory developed in [34] does not directly apply to it. Another
difficulty is that not many analytical tools have been developed to deal with the pro-
jection operator onto Kexp (compared with, for example, the projection operator onto
PSD cones) which is only implicitly specified. Until now, these issues have made
challenging the establishment of error bounds for objects like Kexp, many of which
are of growing interest in the mathematical programming community.

Our research is at the intersection of two topics: error bounds and the facial structure
of cones. General information on the former can be found, for example, in [26, 40].
Classically, there seems to be a focus on the so-called Hölderian error bounds (see
also [27–29]) but we will see in this paper that non Hölderian behavior can still appear
even in relatively natural settings such as conic feasibility problems associated to the
exponential cone.

Facts on the facial structure of convex cones can be found, for example, in [3, 4,
42]. We recall that a cone is said to be facially exposed if each face arises as the
intersection of the whole cone with some supporting hyperplane. Stronger forms of
facial exposedness have also been studied to some extent, here are some examples:
projectional exposedness [13, 51], niceness [44, 46], tangential exposedness [47],
amenability [34]. See also [36] for a comparison between a few different types of
facial exposedness. These notions are useful in many topics, e.g.: regularization of
convex programs and extended duals [13, 32, 45], studying the closure of certain
linear images [32, 43], lifts of convex sets [21] and error bounds [34]. However, as can
be seen in Fig. 1, the exponential cone is not even a facially exposed cone, so none of the
aforementioned notions apply (in particular, the face Fne := {(0, 0, z) | z ≥ 0} is not
exposed). This was one of the motivations for looking beyond facial exposedness and

1 Our notation for the exponential cone coincides with the one in [39]. However, the x, y, z variables might
appear permuted in other papers, e.g., [37, 41, 49].
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x

{(x, y, z) | x ≤ 0, z ≥ 0, y = 0}
y

{(x, y, z) | y > 0, z ≥ ye
x
y }

z

Fig. 1 The exponential cone is the union of the two labelled sets

developing a framework for deriving error bounds for feasibility problems associated
to general closed convex cones.

1.1 Outline and results

The goal of this paper is to build a robust framework that may be used to obtain error
bounds for previously inaccessible cones, and to demonstrate the use of this framework
by applying it to fully describe error bounds for (Feas) with K = Kexp.

In Sect. 2, we recall preliminaries. New contributions begin in Sect. 3.We first recall
some rules for chains of faces and the diamond composition. Then we show how error
bounds may be constructed using objects known as one-step facial residual functions.
In Sect. 3.1, we build our general framework for constructing one-step facial residual
functions. Our key result, Theorem 3.10, obviates the need of computing explicitly the
projection onto the cone. Instead, we make use of the parametrization of the boundary
of the cone and projections onto the proper faces of a cone: thus, our approach is
advantageous when these projections are easier to analyze than the projection onto the
whole cone itself. We emphasize that all of the results of Sect. 3 are applicable to a
general closed convex cone.

In Sect. 4, we use our new framework to fully describe error bounds for (Feas)
with K = Kexp. This was previously a problem lacking a clear strategy, because all
projections onto Kexp are implicitly specified. However, having obviated the need to
project onto Kexp, we successfully obtain all the necessary FRFs, partly because it
is easier to project onto the proper faces of Kexp than to project onto Kexp itself.
Surprisingly, we discover that different collections of faces and exposing hyperplanes
admit very different FRFs. In Sect. 4.2.1, we show that for the unique 2-dimensional
face, any exponent in (0, 1) may be used to build a valid FRF, while the supremum
over all the admissible exponents cannot be. Furthermore, a better FRF for the 2D
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face can be obtained if we go beyond Hölderian error bounds and consider a so-called
entropic error bound which uses a modified Boltzmann-Shannon entropy function,
see Theorem 4.2. The curious discoveries continue; for infinitely many 1-dimensional
faces, theFRF, and thefinal error bound, feature exponent 1/2. For thefinal outstanding
1-dimensional exposed face, the FRF, and the final error bound, are Lipschitzian for all
exposing hyperplanes except exactly one, forwhich no exponent will suffice. However,
for this exceptional case, our framework still successfully finds an FRF, which is
logarithmic in character (Corollary 4.11). Consequentially, the system consisting of
{(0, 0, 1)}⊥ and Kexp possesses a kind of “logarithmic error bound" (seeExample 4.20)
instead of a Hölderian error bound. In Theorems 4.13 and 4.17, we give explicit error
bounds by using our FRFs and the suite of tools we developed in Sect. 3. We also
show that the error bound given in Theorem 4.13 is tight, see Remark 4.14.

These findings about the exponential cone are surprising, since we are not aware
of other objects having this litany of odd behaviour hidden in their structure all at
once.2 One possible reason for the absence of previous reports on these phenomena
might have been the sheer absence of tools for obtaining error bounds for general
cones. In this sense, we believe that the machinery developed in Sect. 3 might be a
reasonable first step towards filling this gap. In Sect. 4.4, we document additional
odd consequences and connections to other concepts, with particular relevance to the
Kurdyka-Łojasiewicz (KL) property [1, 2, 8–10, 30]. In particular, we have two sets
satisfying a Hölderian error bound for every γ ∈ (0, 1) but the supremum of allowable
exponents is not allowable. Consequently, one obtains a functionwith the K L property
with exponent α for any α ∈ (1/2, 1) at the origin, but not for α = 1/2. We conclude
in Sect. 5.

2 Preliminaries

We recall that E denotes an arbitrary finite-dimensional real Euclidean space. We will
adopt the following convention, vectorswill be boldfacedwhile scalarswill use normal
typeface. For example, if p ∈ R

3, we write p = (px , py, pz), where px , py, pz ∈ R.
We denote by B(η) the closed ball of radius η centered at the origin, i.e., B(η) =

{x ∈ E | ‖x‖ ≤ η}. Let C ⊆ E be a convex set. We denote the relative interior and the
linear span of C by riC and spanC , respectively. We also denote the boundary of C
by ∂C , and clC is the closure of C . We denote the projection operator onto C by PC ,
so that PC (x) = argminy∈C‖x − y‖. Given closed convex sets C1, C2 ⊆ E , we note
the following properties of the projection operator

d(x, C1) ≤ d(x, C2)+ d(PC2(x), C1) (2.1)

d(PC2(x), C1) ≤ d(x, C2)+ d(x, C1). (2.2)

2 To be fair, the exponential function is the classical example of a non-semialgebraic analytic function.
Given that semialgebraicity is connected to the KL property (which is related to error bounds), one may
argue that it is not that surprising that the exponential cone has its share of quirks. Nevertheless, given how
natural the exponential cone is, the amount of quirks is still somewhat surprising.
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2.1 Cones and their faces

Let K be a closed convex cone. We say that K is pointed if K ∩ −K = {0}. The
dimension of K is denoted by dim(K) and is the dimension of the linear subspace
spanned by K. A face of K is a closed convex cone F satisfying F ⊆ K and the
following property

x, y ∈ K, x+ y ∈ F ⇒ x, y ∈ F .

In this case, we write F � K. We say that F is proper if F �= K. A face is said to be
nontrivial if F �= K and F �= K ∩−K. In particular, if K is pointed (as is the case of
the exponential cone), a nontrivial face is neither K nor {0}. Next, let K∗ denote the
dual cone of K, i.e., K∗ = {z ∈ E | 〈x, z〉 ≥ 0,∀x ∈ K}. We say that F is an exposed
face if there exists z ∈ K∗ such that F = K ∩ {z}⊥.

A chain of faces of K is a sequence of faces satisfying F� � · · · � F1 such that
each Fi is a face of K and the inclusions Fi+1 � Fi are all proper. The length of the
chain is defined to be �. With that, we define the distance to polyhedrality of K as the
length minus one of the longest chain of faces of K such that F� is polyhedral and Fi

is not polyhedral for i < �, see [35, Sect. 5.1]. We denote the distance to polyhedrality
by �poly(K).

2.2 Lipschitzian and Hölderian error bounds

In this subsection, suppose that C1, . . . , C� ⊆ E are convex sets with nonempty
intersection. We recall the following definitions.

Definition 2.1 (Hölderian and Lipschitzian error bounds) The sets C1, . . . , C� are
said to satisfy a Hölderian error bound if for every bounded set B ⊆ E there exist
some κB > 0 and an exponent γB ∈ (0, 1] such that

d(x,∩�
i=1Ci ) ≤ κB max

1≤i≤�
d(x, Ci )

γB , ∀ x ∈ B.

If we can take the same γB = γ ∈ (0, 1] for all B, then we say that the bound is
uniform. If the bound is uniform with γ = 1, we call it a Lipschitzian error bound.

We note that the concepts in Definition 2.1 also have different names throughout the
literature. When C1, . . . , C� satisfy a Hölderian error bound it is said that they satisfy
bounded Hölder regularity, e.g., see [11, Definition 2.2]. When a Lipschitzian error
bound holds,C1, . . . , C� are said to satisfy bounded linear regularity, see [5, Sect. 5] or
[6]. Bounded linear regularity is also closely related to the notion of subtransversality
[24, Definition 7.5].

Hölderian and Lipschitzian error bounds will appear frequently in our results, but
we also encounter non-Hölderian bounds as in Theorems 4.2 and 4.10. Next, we recall
the following result which ensures a Lipschitzian error bound holds between families
of convex sets when a constraint qualification is satisfied.
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Proposition 2.2 [6, Corollary 3] Let C1, . . . , C� ⊆ E be convex sets such that
C1, . . . , Ck are polyhedral. If

(
k⋂

i=1
Ci

)⋂
(

�⋂
j=k+1

ri C j

)
�= ∅,

then for every bounded set B there exists κB > 0 such that

d
(
x,∩�

i=1Ci

)
≤ κB

(
max
1≤i≤�

d(x, Ci )

)
, ∀x ∈ B.

In view of (Feas), we say that Slater’s condition is satisfied if (L+ a) ∩ riK �= ∅.
If K can be written as K1 × K2 ⊆ E1 × E2, where E1 and E2 are real Euclidean
spaces and K1 ⊆ E1 is polyhedral, we say that the partial polyhedral Slater’s (PPS)
condition is satisfied if

(L+ a) ∩ (K1 × (riK2)) �= ∅. (2.3)

Adding a dummy coordinate, if necessary, we can see Slater’s condition as a particular
case of the PPS condition. By convention, we consider that the PPS condition is
satisfied for (Feas) if one of the following is satisfied: 1) L + a intersects riK; 2)
(L + a) ∩ K �= ∅ and K is polyhedral; or 3) K can be written as a direct product
K1 ×K2 where K1 is polyhedral and (2.3) is satisfied.

Noting that (L+ a)∩ (K1 × (riK2)) = (L+ a)∩ (K1 × E2)∩ (E1 × (riK2)), we
deduce the following result from Proposition 2.2.

Proposition 2.3 (Error bound under PPS condition) Suppose that (Feas) satisfies the
partial polyhedral Slater’s condition. Then, for every bounded set B there exists κB > 0
such that

d(x, (L+ a) ∩K) ≤ κB max{d(x,K), d(x,L+ a)}, ∀x ∈ B.

We recall that for a, b ∈ R+ we have a + b ≤ 2max{a, b} ≤ 2(a + b), so Proposi-
tions 2.2 and 2.3 can also be equivalently stated in terms of sums of distances.

3 Facial residual functions and error bounds

In this section, we discuss a strategy for obtaining error bounds for the conic linear
system (Feas) based on the so-called facial residual functions that were introduced in
[34]. In contrast to [34], we will not require that K be amenable.

The motivation for our approach is as follows. If it were the case that (Feas) sat-
isfies some constraint qualification, we would have a Lipschitizian error bound per
Proposition 2.3, see also [6] for other sufficient conditions. Unfortunately, this does
not happen in general. However, as long as (Feas) is feasible, there is always a face
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of K that contains the feasible region of (Feas) and for which a constraint qualifica-
tion holds. The error bound computation essentially boils down to understanding how
to compute the distance to this special face. The first result towards our goal is the
following.

Proposition 3.1 (An error bound when a face satisfying a CQ is known) Suppose that
(Feas) is feasible and let F � K be a face such that

(a) F contains K ∩ (L+ a).
(b) {F ,L+ a} satisfies the PPS condition.3

Then, for every bounded set B, there exists κB > 0 such that

d(x,K ∩ (L+ a)) ≤ κB(d(x,F)+ d(x,L+ a)), ∀x ∈ B.

Proof Since F is a face of K, assumption (a) implies K ∩ (L + a) = F ∩ (L + a).
Then, the result follows from assumption (b) and Proposition 2.3. ��
From Proposition 3.1 we see that the key to obtaining an error bound for the system
(Feas) is to find a face F � K satisfying (a), (b) and we must know how to estimate
the quantity d(x,F) from the available information d(x,K) and d(x,L+ a).

This is where we will make use of facial reduction and facial residual functions.
The former will help us find F and the latter will be instrumental in upper bounding
d(x,F). First, we recall below a result that follows from the analysis of the FRA-poly
facial reduction algorithm developed in [35].

Proposition 3.2 [34, Proposition 5]4 Let K = K1 × · · · × Ks , where each Ki is a
closed convex cone. Suppose (Feas) is feasible. Then there is a chain of faces

F� � · · · � F1 = K (3.1)

of length � and vectors {z1, . . . , z�−1} satisfying the following properties.

(i) �− 1 ≤∑s
i=1 �poly(Ki ) ≤ dimK.

(ii) For all i ∈ {1, . . . , �− 1}, we have

zi ∈ F∗
i ∩ L⊥ ∩ {a}⊥ and Fi+1 = Fi ∩ {zi }⊥.

(iii) F� ∩ (L+ a) = K ∩ (L+ a) and {F�,L+ a} satisfies the PPS condition.

In view of Proposition 3.2, we define the distance to the PPS condition dPPS(K,L+a)
as the length minus one of the shortest chain of faces (as in (3.1)) satisfying items (ii)
and (iii) in Proposition 3.2. For example, if (Feas) satisfies the PPS condition, we have
dPPS(K,L+ a) = 0.

Next, we recall the definition of facial residual functions from [34, Definition 16].

3 As a reminder, the PPS condition is, by convention, a shorthand for three closely related conditions, see
remarks after (2.3).
4 Although [34, Proposition 5] was originally stated for pointed cones, it holds for general closed convex
cones. Indeed, its proof only relies on [35, Proposition 8], which holds for general closed convex cones.
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Definition 3.3 (Facial residual function5) Let K be a closed convex cone, F � K be
a face, and let z ∈ F∗. Suppose that ψF ,z : R+ × R+ → R+ satisfies the following
properties:

(i) ψF ,z is nonnegative, monotone nondecreasing in each argument andψF ,z(0, t) =
0 for every t ∈ R+.

(ii) The following implication holds for any x ∈ spanK and any ε ≥ 0:

d(x,K) ≤ ε, 〈x, z〉 ≤ ε, d(x, spanF) ≤ ε ⇒ d(x,F ∩ {z}⊥) ≤ ψF ,z(ε, ‖x‖).

Then, ψF ,z is said to be a facial residual function for F and z with respect to K.

Definition 3.3, in its most general form, represents “two-steps” along the facial struc-
ture of a cone: we have a cone K, a face F (which could be different from K) and
a third face defined by F ∩ {z}⊥. In this work, however, we will be focused on the
following special case of Definition 3.3.

Definition 3.4 (One-step facial residual function (1-FRF)) Let K be a closed convex
cone and z ∈ K∗. A function ψK,z : R+ × R+ → R+ is called a one-step facial
residual function (1-FRF) forK and z if it is a facial residual function ofK and zwith
respect toK. That is, ψK,z satisfies item (i) of Definition 3.3 and for every x ∈ spanK
and any ε ≥ 0:

d(x,K) ≤ ε, 〈x, z〉 ≤ ε ⇒ d(x,K ∩ {z}⊥) ≤ ψK,z(ε, ‖x‖).

Remark 3.5 (Concerning the implication inDefinition 3.4) In view of themonotonicity
of ψK,z, the implication in Definition 3.4 can be equivalently and more succinctly
written as

d(x,K ∩ {z}⊥) ≤ ψK,z(max{d(x,K), 〈x, z〉}, ‖x‖), ∀x ∈ spanK.

The unfolded form presented in Definition 3.4 is more handy in our discussions and
analysis below.

Facial residual functions always exist (see [34, Sect. 3.2] for the case of pointed
cones, although the argument holds in general), but their computation is often non-
trivial. Next, we review a few examples.

Example 3.6 (Examples of facial residual functions) If K is a symmetric cone (i.e.,
a self-dual homogeneous cone, see [18, 19]), then given F � K and z ∈ F∗, there
exists a κ > 0 such that ψF ,z(ε, t):=κε + κ

√
εt is a one-step facial residual function

for F and z, see [34, Theorem 35].
If K is a polyhedral cone, the function ψF ,z(ε, t):=κε can be taken instead, with

no dependency on t , see [34, Proposition 18].

5 The only difference between Definition 3.3 and the definition of facial residual functions in [34, Defini-
tion 16] is that we added the “with respect to K” part, to emphasize the dependency on K.
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Moving on, we say that a function ψ̃F ,z is a positively rescaled shift of ψF ,z if
there are positive constants M1, M2, M3 and nonnegative constant M4 such that

ψ̃F ,z(ε, t) = M3ψF ,z(M1ε, M2t)+ M4ε. (3.2)

This is a generalization of the notion of positive rescaling in [34], which sets M4 = 0.
We also need to compose facial residual functions in a special manner. Let f : R+ ×
R+ → R+ and g : R+×R+ → R+ be functions.We define the diamond composition
f♦g to be the function satisfying

( f♦g)(a, b) = f (a + g(a, b), b), ∀a, b ∈ R+. (3.3)

Note that the above composition is not associative in general. When we have functions
fi : R+ × R+ → R+, i = 1, . . . , m with m ≥ 3, we define fm♦ · · · ♦ f1 inductively
as the function ϕm such that

ϕi := fi♦ϕi−1, i ∈ {2, . . . , m}
ϕ1:= f1.

With that, we have fm♦ fm−1♦ · · · ♦ f2♦ f1:= fm♦( fm−1♦(· · · ♦( f2♦ f1))).
The following lemma, which holds for a general closed convex coneK, shows how

(positively rescaled shifts of) one-step facial residual functions for the faces of K can
be combined via the diamond composition to derive useful bounds on the distance
to faces. A version of it was proved in [34, Lemma 22], which required the cones
to be pointed and made use of general (i.e., not necessarily one-step) facial residual
functions with respect to K. This is a subtle, but very crucial difference which will
allows us to relax the assumptions in [34].

Lemma 3.7 (Diamond composing facial residual functions) Suppose (Feas) is feasible
and let

F� � · · · � F1 = K

be a chain of faces ofK together with zi ∈ F∗
i ∩L⊥∩{a}⊥ such thatFi+1 = Fi∩{zi }⊥,

for i = 1, . . . , � − 1. For each i , let ψi be a 1-FRF for Fi and zi . Then, there is a
positively rescaled shift of ψi (still denoted as ψi by an abuse of notation) so that for
every x ∈ E and ε ≥ 0:

d(x,K) ≤ ε, d(x,L+ a) ≤ ε ⇒ d(x,F�) ≤ ϕ(ε, ‖x‖),

where ϕ = ψ�−1♦ · · · ♦ψ1, if � ≥ 2. If � = 1, we let ϕ be the function satisfying
ϕ(ε, t) = ε.

Proof For � = 1, we have F� = K, so the lemma follows immediately. Now, we
consider the case � ≥ 2. First we note that L + a is contained in all the {zi }⊥ for
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i = 1, . . . , �− 1. Since the distance of x ∈ E to {zi }⊥ is given by |〈x,zi 〉|‖zi‖ , we have the
following chain of implications

d(x,L+ a) ≤ ε ⇒ d(x, {zi }⊥) ≤ ε ⇒ 〈x, zi 〉 ≤ ε‖zi‖. (3.4)

Next, we proceed by induction. If � = 2, we have that ψ1 is a one-step facial residual
function for K and z1. By Definition 3.4, we have

y ∈ spanK, d(y,K) ≤ ε, 〈y, z1〉 ≤ ε ⇒ d(y,F2) ≤ ψ1(ε, ‖y‖).

In view of (3.4) and the monotonicity of ψ1, we see further that

y ∈ spanK, d(y,K) ≤ ε, d(y,L+ a) ≤ ε ⇒ d(y,F2) ≤ ψ1(ε(1+ ‖z1‖), ‖y‖).
(3.5)

Now, suppose that x ∈ E and ε ≥ 0 are such that d(x,K) ≤ ε and d(x,L + a) ≤ ε.
Let x̂ := PspanK(x). SinceK ⊆ spanK, we have d(x, spanK) ≤ d(x,K) and, in view
of (2.2), we have that

d(x̂,K) ≤ d(x, spanK)+ d(x,K) ≤ 2ε,

d(x̂,L+ a) ≤ d(x, spanK)+ d(x,L+ a) ≤ 2ε.
(3.6)

From (2.1), (3.5) and (3.6) we obtain

d(x,F2) ≤ d(x, spanK)+ d(x̂,F2) ≤ ε + ψ1(2ε(1+ ‖z1‖), ‖x̂‖)
≤ ε + ψ1(2ε(1+ ‖z1‖), ‖x‖),

where the last inequality follows from the monotonicity of ψ1 and the fact that ‖x̂‖ ≤
‖x‖. This proves the lemma for chains of length � = 2 because the function mapping
(ε, t) to ε + ψ1(2ε(1+ ‖z1‖), t) is a positively rescaled shift of ψ1.

Now, suppose that the lemma holds for chains of length �̂ and consider a chain of
length �̂+ 1. By the induction hypothesis, we have

d(x,K) ≤ ε, d(x,L+ a) ≤ ε ⇒ d(x,F
�̂
) ≤ ϕ(ε, ‖x‖), (3.7)

where ϕ = ψ
�̂−1♦ · · · ♦ψ1 and theψi are (positively rescaled shifts of) one-step facial

residual functions. By the definition of ψ
�̂
as a one-step facial residual function and

using (3.4), we may positively rescale ψ
�̂
(still denoted as ψ

�̂
by an abuse of notation)

so that for y ∈ spanF
�̂
and ε̂ ≥ 0, the following implication holds:

d(y,F
�̂
) ≤ ε̂, d(y,L+ a) ≤ ε̂ ⇒ d(y,F

�̂+1) ≤ ψ
�̂
(ε̂, ‖y‖). (3.8)

Now, suppose that x ∈ E and ε ≥ 0 satisfy d(x,K) ≤ ε and d(x,L + a) ≤ ε. Let
x̂ := PspanF

�̂
(x). As before, since F

�̂
⊆ spanF

�̂
, we have d(x, spanF

�̂
) ≤ d(x,F

�̂
)
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and, in view of (2.2), we have

d(x̂,F
�̂
) ≤ d(x, spanF

�̂
)+ d(x,F

�̂
) ≤ 2d(x,F

�̂
) ≤ 2d(x,F

�̂
)+ ε,

d(x̂,L+ a) ≤ d(x, spanF
�̂
)+ d(x,L+ a) ≤ d(x,F

�̂
)+ ε ≤ 2d(x,F

�̂
)+ ε.

(3.9)

Let ψ̂
�̂
be such that ψ̂

�̂
(s, t):=s + ψ

�̂
(2s, t), so that ψ̂

�̂
is a positively rescaled shift

of ψ
�̂
. Then, (3.9) together with (3.8) and (2.1) gives

d(x,F
�̂+1) ≤ d(x, spanF

�̂
)+ d(x̂,F

�̂+1) ≤ d(x,F
�̂
)+ d(x̂,F

�̂+1)

≤ d(x,F
�̂
)+ ψ

�̂
(ε + 2d(x,F

�̂
), ‖x̂‖) (a)≤ d(x,F

�̂
)+ ψ

�̂
(2ε + 2d(x,F

�̂
), ‖x‖)

≤ ψ̂
�̂
(ε + d(x,F

�̂
), ‖x‖) (b)≤ ψ̂

�̂
(ε + ϕ(ε, ‖x‖), ‖x‖) = (ψ̂

�̂
♦ϕ)(ε, ‖x‖),

where (a) follows from the monotonicity of ψ
�̂
and the fact that ‖x̂‖ ≤ ‖x‖, and (b)

follows from (3.7) and the monotonicity of ψ̂
�̂
. This completes the proof. ��

We now have all the pieces to state an error bound result for (Feas) that does not
require any constraint qualifications.

Theorem 3.8 (Error bound based on 1-FRFs) Suppose (Feas) is feasible and let

F� � · · · � F1 = K

be a chain of faces of K together with zi ∈ F∗
i ∩ L⊥ ∩ {a}⊥ such that {F�,L + a}

satisfies the PPS condition and Fi+1 = Fi ∩ {zi }⊥ for every i . For i = 1, . . . , �− 1,
let ψi be a 1-FRF for Fi and zi .

Then, there is a suitable positively rescaled shift of the ψi (still denoted as ψi by
an abuse of notation) such that for any bounded set B there is a positive constant κB

(depending on B,L, a,F�) such that

x ∈ B, d(x,K) ≤ ε, d(x,L+ a) ≤ ε ⇒ d (x, (L+ a) ∩K) ≤ κB(ε + ϕ(ε, M)),

where M = supx∈B ‖x‖, ϕ = ψ�−1♦ · · · ♦ψ1, if � ≥ 2. If � = 1, we let ϕ be the
function satisfying ϕ(ε, M) = ε.

Proof The case � = 1 follows from Proposition 3.1, by takingF = F1. Now, suppose
� ≥ 2. We apply Lemma 3.7, which tells us that, after positively rescaling and shifting
the ψi , we have:

d(x,K) ≤ ε, d(x,L+ a) ≤ ε �⇒ d(x,F�) ≤ ϕ(ε, ‖x‖),

where ϕ = ψ�−1♦ · · · ♦ψ1. In particular, since ‖x‖ ≤ M for x ∈ B we have

d(x,K) ≤ ε, d(x,L+ a) ≤ ε �⇒ d(x,F�) ≤ ϕ(ε, M), ∀x ∈ B (3.10)
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By assumption, {F�,L+ a} satisfies the PPS condition. We invoke Proposition 3.1 to
find κB > 0 such that

d(x,K ∩ (L+ a)) ≤ κB(d(x,F�)+ d(x,L+ a)), ∀x ∈ B. (3.11)

Combining (3.10), (3.11), we conclude that if x ∈ B and ε ≥ 0 satisfy d(x,K) ≤ ε

and d(x,L + a) ≤ ε, then we have d (x, (L+ a) ∩K) ≤ κB(ε + ϕ(ε, M)). This
completes the proof. ��
Theorem 3.8 is an improvement over [34, Theorem 23] because it removes the
amenability assumption. Furthermore, it shows that it is enough to determine the
one-step facial residual functions for K and its faces, whereas [34, Theorem 23] may
require all possible facial residual functions related to K and its faces. Nevertheless,
Theorem 3.8 is still an abstract error bound result; whether some concrete inequality
can be written down depends on obtaining a formula for the ϕ function. To do so,
it would require finding expressions for the one-step facial residual functions. In the
next subsections, we will address this challenge.

3.1 How to compute one-step facial residual functions?

In this section, we present some general tools for computing one-step facial residual
functions.

Lemma 3.9 (1-FRF from error bound) Suppose that K is a closed convex cone and
let z ∈ K∗ be such that F = {z}⊥ ∩ K is a proper face of K. Let g : R+ →
R+ be monotone nondecreasing with g(0) = 0, and let κz,s be a finite monotone
nondecreasing nonnegative function in s ∈ R+ such that

d(q,F) ≤ κz,‖q‖g(d(q,K)) whenever q ∈ {z}⊥. (3.12)

Define the function ψK,z : R+ × R+ → R+ by

ψK,z(s, t) := max {s, s/‖z‖} + κz,tg (s +max {s, s/‖z‖}) .

Then we have

d(p,F) ≤ ψK,z(ε, ‖p‖) whenever d(p,K) ≤ ε and 〈p, z〉 ≤ ε. (3.13)

Moreover, ψK,z is a 1-FRF for K and z.

Proof Suppose that d(p,K) ≤ ε and 〈p, z〉 ≤ ε. We first claim that

d(p, {z}⊥) ≤ max {ε, ε/‖z‖} . (3.14)

This can be shown as follows. Since z ∈ K∗, we have 〈p+ PK(p)− p, z〉 ≥ 0 and

〈p, z〉 ≥ −〈PK(p)− p, z〉 ≥ −ε‖z‖.
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We conclude that |〈p, z〉| ≤ max{ε‖z‖, ε}. This, in combination with d(p, {z}⊥) =
|〈p, z〉|/‖z‖, leads to (3.14).

Next, let q := P{z}⊥p. Then we have that

d(p,F) ≤ ‖p− q‖ + d(q,F)
(a)≤ max {ε, ε/‖z‖} + d(q,F)

(b)≤ max {ε, ε/‖z‖} + κz,‖q‖g (d(q,K))

(c)≤ max {ε, ε/‖z‖} + κz,‖p‖g (d(q,K))

(d)≤ max {ε, ε/‖z‖} + κz,‖p‖g (ε +max {ε, ε/‖z‖}) ,

where (a) follows from (3.14), (b) is a consequence of (3.12), (c) holds because
‖q‖ = ‖P{z}⊥p‖ ≤ ‖p‖ so that κz,‖q‖ ≤ κz,‖p‖, and (d) holds because g is mono-
tone nondecreasing and

d(q,K) ≤ d(p,K)+ ‖q− p‖ ≤ ε +max {ε, ε/‖z‖} ;

here, the second inequality follows from (3.14) and the assumption that d(p,K) ≤ ε.
This proves (3.13). Finally, notice that ψK,z is nonnegative, monotone nondecreasing
in each argument, and thatψK,z(0, t) = 0 for every t ∈ R+. Hence,ψK,z is a one-step
facial residual function for K and z. ��

In view of Lemma 3.9, one may construct one-step facial residual functions after
establishing the error bound (3.12). In the next theorem, we present a characterization
for the existence of such an error bound. Our result is based on the quantity (3.15)
defined below being nonzero. Note that this quantity does not explicitly involve projec-
tions ontoK; this enables us toworkwith the exponential cone later, whose projections
do not seem to have simple expressions. Figure 2 provides a geometric interpretation
of (3.15).

Theorem 3.10 (Characterization of the existence of error bounds) Suppose that K is a
closed convex cone and let z ∈ K∗ be such that F = {z}⊥ ∩K is a nontrivial exposed
face of K. Let η ≥ 0, α ∈ (0, 1] and let g : R+ → R+ be monotone nondecreasing
with g(0) = 0 and g ≥ | · |α . Define

γz,η := inf
v

{
g(‖w− v‖)
‖w− u‖

∣∣∣∣ v∈∂K ∩ B(η)\F , w= P{z}⊥v, u= PFw, w �=u
}
.

(3.15)

Then the following statements hold.

(i) If γz,η ∈ (0,∞], then it holds that

d(q,F) ≤ κz,ηg(d(q,K)) whenever q ∈ {z}⊥ ∩ B(η), (3.16)

where κz,η := max
{
2η1−α, 2γ−1

z,η

}
< ∞.
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x-axis

y-axis

Kexp ∩ {(x, y, z) | z = 1}

u = PFw

v = PKq

q ∈ {z}⊥ ∩ B(η)\F

w = P{z}⊥v

Fig. 2 Theorem 3.10 shows that we may replace the problem of showing that g(‖q− PKq‖)/‖q− PFq‖ is
uniformly bounded away from zero for all q ∈ {z}⊥∩B(η)\F , with the equivalent problem of showing that
g(‖v− P{z}⊥v‖)/‖P{z}⊥v− PF ◦ P{z}⊥v‖ is uniformly bounded away from zero for all v ∈ ∂K∩ B(η)\F
with P{z}⊥v �= PF ◦ P{z}⊥v. This second problem can sometimes be easier to deal with, because it obviates
the need to project ontoK and projects onto the nontrivial exposed faceF instead. For describing a possibly
higher dimensional problem in 2D, we represent {z}⊥ with a line, K with a 2D slice, and F with a dot; of
course, this is an oversimplification, since q,w, u are not generically colinear, nor would any of the points
necessarily lie in the same horizontal slice. The scenario shown is meant to suggest intuition, but it is not a
plausible configuration of points

(ii) If there exists κB ∈ (0,∞) so that

d(q,F) ≤ κBg(d(q,K)) whenever q ∈ {z}⊥ ∩ B(η), (3.17)

then γz,η ∈ (0,∞].
Proof We first consider item (i). If η = 0 or q ∈ F , the result is vacuously true, so let
η > 0 and q ∈ {z}⊥ ∩ B(η)\F . Then q /∈ K because F = {z}⊥ ∩K. Define

v = PKq, w = P{z}⊥v, and u = PFw.

Then v ∈ ∂K ∩ B(η) because q /∈ K and ‖q‖ ≤ η. If v ∈ F , then we have d(q,F) =
d(q,K) and hence

d(q,F) = d(q,K)1−α · d(q,K)α ≤ η1−αd(q,K)α ≤ κz,ηg(d(q,K)),

where the first inequality holds because ‖q‖ ≤ η, and the last inequality follows from
the definitions of g and κz,η. Thus, from now on, we assume that v ∈ ∂K ∩ B(η)\F .

Next, since w = P{z}⊥v, it holds that v − w ∈ {z}⊥⊥ and hence ‖q − v‖2 =
‖q− w‖2 + ‖w− v‖2. In particular, we have

d(q,K) = ‖q− v‖ ≥ max{‖v− w‖, ‖q− w‖}, (3.18)
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where the equality follows from the definition of v. Now, to establish (3.16), we
consider two cases.

(I) d(q,F) ≤ 2d(w,F);
(II) d(q,F) > 2d(w,F).

(I): In this case, we have from u = PFw and q /∈ F that

2‖w− u‖ = 2d(w,F) ≥ d(q,F) > 0, (3.19)

where the first inequality follows from the assumption in this case (I). Hence,

1

κz,η

(a)≤ 1

2
γz,η

(b)≤ g(‖w− v‖)
2‖w− u‖

(c)≤ g(d(q,K))

2‖w− u‖
(d)≤ g(d(q,K))

d(q,F)
, (3.20)

where (a) is true by the definition of κz,η, (b) uses the condition that v ∈ ∂K∩B(η)\F ,
(3.19) and the definition of γz,η, (c) is true by (3.18) and the monotonicity of g, and
(d) follows from (3.19). This concludes case (I).6

(II): Using the triangle inequality, we have

2d(q,F) ≤ 2‖q− w‖ + 2d(w,F) < 2‖q− w‖ + d(q,F),

where the strict inequality follows from the condition for this case (II). Consequently,
we have d(q,F) ≤ 2‖q− w‖. Combining this with (3.18), we deduce further that

d(q,F) ≤ 2‖q− w‖ ≤ 2max{‖v− w‖, ‖q− w‖}
≤ 2d(q,K) = 2d(q,K)1−α · d(q,K)α

≤ 2η1−αd(q,K)α ≤ κz,ηg(d(q,K)),

where the fourth inequality holds because ‖q‖ ≤ η, and the last inequality follows
from the definitions of g and κz,η. This proves item (i).

We next consider item (ii). Again, the result is vacuously true if η = 0, so let η > 0.
Let v ∈ ∂K ∩ B(η)\F , w = P{z}⊥v and u = PFw with w �= u. Then w ∈ B(η), and
we have in view of (3.17) that

‖w− u‖ (a)= d(w,F)
(b)≤ κBg(d(w,K))

(c)≤ κBg(‖w− v‖),

where (a) holds because u = PFw, (b) holds because of (3.17), w ∈ {z}⊥ and
‖w‖ ≤ η, and (c) is true because g is monotone nondecreasing and v ∈ K. Thus, we
have γz,η ≥ 1/κB > 0. This completes the proof. ��
Remark 3.11 (About κz,η and γ−1

z,η ) As η increases, the infimum in (3.15) is taken over
a larger region, so γz,η does not increase. Accordingly, γ−1

z,η does not decrease when
η increases. Therefore, the κz,η and γ−1

z,η considered in Theorem 3.10 are monotone

6 In particular, in view of (3.20), we see that this case only happens when γz,η < ∞.
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nondecreasing as functions of η when z is fixed. We are also using the convention that
1/∞ = 0 so that κz,η = 2η1−α when γz,η = ∞.

Thus, to establish an error bound as in (3.16), it suffices to show that γz,η ∈ (0,∞]
for the choice of g and η ≥ 0. Clearly, γz,0 = ∞. The next lemma allows us to check
whether γz,η ∈ (0,∞] for an η > 0 by considering convergent sequences.

Lemma 3.12 Suppose that K is a closed convex cone and let z ∈ K∗ be such that
F = {z}⊥ ∩ K is a nontrivial exposed face of K. Let η > 0, α ∈ (0, 1] and let
g : R+ → R+ be monotone nondecreasing with g(0) = 0 and g ≥ | · |α . Let
γz,η be defined as in (3.15). If γz,η = 0, then there exist v̄ ∈ F and a sequence
{vk} ⊂ ∂K ∩ B(η)\F such that

lim
k→∞vk = lim

k→∞wk = v̄ (3.21a)

and lim
k→∞

g(‖wk − vk‖)
‖wk − uk‖ = 0, (3.21b)

where wk = P{z}⊥vk , uk = PFwk and wk �= uk .

Proof Suppose that γz,η = 0. Then, by the definition of infimum, there exists a
sequence {vk} ⊂ ∂K ∩ B(η)\F such that

lim
k→∞

g(‖wk − vk‖)
‖wk − uk‖ = 0, (3.22)

where wk = P{z}⊥vk , uk = PFwk and wk �= uk . Since {vk} ⊂ B(η), by passing to a
convergent subsequence if necessary, we may assume without loss of generality that

lim
k→∞vk = v̄ (3.23)

for some v̄ ∈ K∩ B(η). In addition, since 0 ∈ F ⊆ {z}⊥, and projections onto closed
convex sets are nonexpansive, we see that {wk} ⊂ B(η) and {uk} ⊂ B(η), and hence
the sequence {‖wk − uk‖} is bounded. Then we can conclude from (3.22) and the
assumption g ≥ | · |α that

lim
k→∞‖w

k − vk‖ = 0. (3.24)

Now (3.24), (3.23), and the triangle inequality give wk → v̄. Since {wk} ⊂ {z}⊥, it
then follows that v̄ ∈ {z}⊥. Thus, v̄ ∈ {z}⊥ ∩K = F . This completes the proof. ��

Let K be a closed convex cone. Lemma 3.9, Theorem 3.10 and Lemma 3.12 are
tools to obtain one-step facial residual functions for K. These are exactly the kind
of facial residual functions needed in the abstract error bound result, Theorem 3.8.
We conclude this subsection with a result that connects the one-step facial residual
functions of a product cone and those of its constituent cones, which is useful for
deriving error bounds for product cones.
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Proposition 3.13 (1-FRF for products) Let Ki ⊆ E i be closed convex cones for every
i ∈ {1, . . . , m} and let K = K1 × · · · × Km. Let F � K, z ∈ F∗ and suppose that
F = F1 × · · · × Fm with F i � Ki for every i ∈ {1, . . . , m}. Write z = (z1, . . . , zm)

with zi ∈ (F i )∗.
For every i , let ψF i ,zi

be a 1-FRF for F i and zi . Then, there exists a κ > 0 such
that the function ψF ,z satisfying

ψF ,z(ε, t) =
m∑

i=1

ψF i ,zi
(κε, t)

is a 1-FRF for F and z.

Proof Suppose that x ∈ spanF and ε ≥ 0 satisfy the inequalities

d(x,F) ≤ ε, 〈x, z〉 ≤ ε.

We note that

F ∩ {z}⊥ = (F1 ∩ {z1}⊥)× · · · × (Fm ∩ {zm}⊥),

and that for every i ∈ {1, . . . , m},

d(xi ,F i ) ≤ d(x,F) ≤ ε. (3.25)

Since zi ∈ (F i )∗, we have from (3.25) that

0 ≤ 〈zi , PF i (xi )〉 = 〈zi , PF i (xi )− xi + xi 〉 ≤ ε‖zi‖ + 〈zi , xi 〉. (3.26)

Using (3.26) for all i and recalling that 〈z, x〉 ≤ ε, we have

〈(z1, . . . , zm), (PF1(x1), . . . , PFm (xm))〉 ≤
m∑

i=1

[ε‖zi‖ + 〈zi , xi 〉] ≤ κ̂ε, (3.27)

where κ̂ = 1 +∑m
i=1 ‖zi‖. Since 〈zi , PF i (xi )〉 ≥ 0 for i ∈ {1, . . . , m}, from (3.27)

we obtain

〈zi , PF i (xi )〉 ≤ κ̂ε, i ∈ {1, . . . , m}. (3.28)

This implies that for i ∈ {1, . . . , m} we have
〈zi , xi 〉 = 〈zi , xi − PF i (xi )+ PF i (xi )〉 ≤ ε‖z‖ + κ̂ε, (3.29)

where the inequality follows from (3.25) and (3.28). Now, recapitulating, the facial
residual function ψF i ,zi

has the property that if γ1, γ2 ∈ R+ then the relations

yi ∈ spanF i , d(yi ,F i ) ≤ γ1, 〈yi , zi 〉 ≤ γ2
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imply d(yi ,F i∩{zi }⊥) ≤ ψF i ,zi
(max1≤ j≤2{γ j }, ‖yi‖). Therefore, from (3.25), (3.29)

and the monotonicity of ψF i ,zi
, we have upon recalling x ∈ spanF that

d(xi ,F i ∩ {zi }⊥) ≤ ψF i ,zi
(max{1, κ̂ + ‖z‖}ε, ‖xi‖). (3.30)

Finally, from (3.30), we conclude that

d(x,F ∩ {z}⊥) ≤
m∑

i=1

d(xi ,F i ∩ {zi }⊥) ≤
m∑

i=1

ψF i ,zi
(max{1, κ̂ + ‖z‖}ε, ‖x‖),

where we also used the monotonicity of ψF i ,zi
for the last inequality. This completes

the proof. ��

4 The exponential cone

In this section, we will use all the techniques developed so far to obtain error bounds
for the 3D exponential cone Kexp. We will start with a study of its facial structure
in Sect. 4.1, then we will compute its one-step facial residual functions in Sect. 4.2.
Finally, error bounds will be presented in Sect. 4.3. In Sect. 4.4, we summarize odd
behaviour found in the facial structure of the exponential cone.

4.1 Facial structure

Recall that the exponential cone is defined as follows:

Kexp :=
{
(x, y, z) | y > 0, z ≥ yex/y} ∪ {(x, y, z) | x ≤ 0, z ≥ 0, y = 0} . (4.1)

Its dual cone is given by

K ∗
exp :=

{
(x, y, z) | x < 0, ez ≥ −xey/x} ∪ {(x, y, z) | x = 0, z ≥ 0, y ≥ 0}.

It may therefore be readily seen that K ∗
exp is a scaled and rotated version of Kexp. In

this subsection, we will describe the nontrivial faces of Kexp; see Fig. 3. We will show
that we have the following types of nontrivial faces:

(a) infinitely many exposed extreme rays (1D faces) parametrized by β ∈ R as
follows:

Fβ :=
{(
−β y + y, y, e1−β y

) ∣∣∣∣ y ∈ [0,∞)

}
. (4.2)

(b) a single “exceptional” exposed extreme ray denoted by F∞:

F∞:={(x, 0, 0) | x ≤ 0}. (4.3)
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Kexp

⋃
β∈R

Fβ

F∞

F−∞

K∗
exp

⋃
β∈R

zβ

zβ=−∞

zβ=∞, cone{z∞} = Fne

y-axis

x-axis

z-axis

Fig. 3 The exponential cone and its dual, with faces and exposing vectors labeled according to our index β

(c) a single non-exposed extreme ray denoted by Fne:

Fne:={(0, 0, z) | z ≥ 0}. (4.4)

(d) a single 2D exposed face denoted by F−∞:

F−∞:={(x, y, z) | x ≤ 0, z ≥ 0, y = 0}, (4.5)

where we note that F∞ and Fne are the extreme rays of F−∞.

Notice that except for the case (c), all faces are exposed and thus arise as an intersection
{z}⊥ ∩ Kexp for some z ∈ K ∗

exp. To establish the above characterization, we start by
examining how the components of z determine the corresponding exposed face.

4.1.1 Exposed faces

Let z ∈ K ∗
exp be such that {z}⊥ ∩ Kexp is a nontrivial face of Kexp. Then z �= 0 and

z ∈ ∂K ∗
exp. We consider the following cases.

zx < 0: Since z ∈ ∂K ∗
exp, we must have zze = −zx e

zy
zx and hence

z = (zx , zy,−zx e
zy
zx
−1

). (4.6)

Since zx �= 0, we see that q ∈ {z}⊥ if and only if

qx + qy

(
zy

zx

)
− qze

zy
zx
−1 = 0. (4.7)
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Solving (4.7) for qz and letting β := zy
zx

to simplify the exposition, we have

qz = e1−
zy
zx

(
qx + qy · zy

zx

)
= e1−β

(
qx + qyβ

)

with β := zy

zx
∈ (−∞,∞). (4.8)

Thus, we obtain that {z}⊥ = {(
x, y, e1−β (x + yβ)

) ∣∣ x, y ∈ R
}
. Combining this

with the definition of Kexp and the fact that {z}⊥ is a supporting hyperplane (so that
Kexp ∩ {z}⊥ = ∂Kexp ∩ {z}⊥) yields

Kexp ∩ {z}⊥ = ∂Kexp ∩ {z}⊥
=
{(

x, y, e1−β (x + yβ)
) ∣∣ e1−β (x + yβ) = ye

x
y , y > 0

}

⋃{(
x, y, e1−β (x + yβ)

) ∣∣ x ≤ 0, e1−β (x + yβ) ≥ 0, y = 0
}

=
{(

x, y, e1−β (x + yβ)
) ∣∣ e1−β (x + yβ) = ye

x
y , y > 0

}
∪ {0}. (4.9)

We now refine the above characterization in the next proposition.

Proposition 4.1 (Characterization ofFβ , β ∈ R) Let z ∈ K ∗
exp satisfy z = (zx , zy, zz),

where zze = −zx e
zy
zx and zx < 0. Define β = zy

zx
as in (4.8) and letFβ := Kexp∩{z}⊥.

Then

Fβ =
{(
−β y + y, y, e1−β y

) ∣∣∣∣ y ∈ [0,∞)

}
.

Proof LetΩ := {(−β y + y, y, e1−β y
) ∣∣ y ∈ [0,∞)

}
. In view of (4.9), we can check

that Ω ⊆ Fβ . To prove the converse inclusion, pick any q =
(
x, y, e1−β(x + yβ)

) ∈
Fβ . We need to show that q ∈ Ω .

To this end, we note from (4.9) that if y = 0, then necessarily q = 0 and conse-
quently q ∈ Ω . On the other hand, if y > 0, then (4.9) gives yex/y = (x + β y)e1−β .
Then we have the following chain of equivalences:

yex/y = (x + β y)e1−β

⇐⇒ −e−1= −(x/y + β)e−(x/y+β)

(a)⇐⇒ −x/y − β= −1
⇐⇒ x = y − yβ,

(4.10)

where (a) follows from the fact that the function t �→ tet is strictly increasing on
[−1,∞). Plugging the last expression back into q, we may compute

qz = e1−β(x + yβ) = e1−β(y − yβ + yβ) = ye1−β. (4.11)

123



S. B. Lindstrom et al.

Altogether, (4.10), (4.11) together with y > 0 yield

q =
(

y − β y, y, ye1−β
)
∈ Ω.

This completes the proof. ��
Next, we move on to the two remaining cases.
zx = 0, zz > 0: Notice that q ∈ Kexp means that qy ≥ 0 and qz ≥ 0. Since zz > 0

and zy ≥ 0, in order to have q ∈ {z}⊥, we must have qz = 0. The the definition of
Kexp also forces qy = 0 and hence

{z}⊥ ∩ Kexp = {(x, 0, 0) | x ≤ 0} =: F∞. (4.12)

This one-dimensional face is exposed by any hyperplane with normal vectors coming
from the set {(0, zy, zz) : zy ≥ 0, zz > 0)}.
zx = 0, zz = 0: In this case, we have zy > 0. In order to have q ∈ {z}⊥, we must have
qy = 0. Thus

{z}⊥ ∩ Kexp = {(x, y, z) | x ≤ 0, z ≥ 0, y = 0} =: F−∞, (4.13)

which is the unique two-dimensional face of Kexp.

4.1.2 The single non-exposed face and completeness of the classification

The face Fne is non-exposed because, as shown in Proposition 4.1, (4.12) and (4.13),
it never arises as an intersection of the form {z}⊥ ∩ Kexp, for z ∈ K ∗

exp.
We now show that all nontrivial faces of Kexp were accounted for in (4.2), (4.3),

(4.4), (4.5). First of all, by the discussion in Sect. 4.1.1, all nontrivial exposed faces
must be among the ones in (4.2), (4.3) and (4.5). So, let F be a non-exposed face of
Kexp. Then, it must be contained in a nontrivial exposed face of Kexp.7 Therefore, F
must be a proper face of the unique 2D face (4.5). This implies that F is one of the
extreme rays of (4.5): F∞ or Fne. By assumption, F is non-exposed, so it must be
Fne.

4.2 One-step facial residual functions

In this subsection,wewill use themachinery developed in Sect. 3 to obtain the one-step
facial residual functions for Kexp.

Let us first discuss how the discoveries were originally made, and how that process
motivated the development of the frameworkwe built in Sect. 3. The FRFs proven here
were initially found by using the characterizations of Theorem 3.10 and Lemma 3.12
together with numerical experiments. Specifically, we used Maple8 to numerically

7 This is a general fact. A proper face of a closed convex cone is contained in a proper exposed face, e.g.,
[13, Proposition 3.6].
8 Though one could use any suitable computer algebra package.
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evaluate limits of relevant sequences (3.21), as well as plotting lower dimensional
slices of the function v �→ g(‖v−w‖)/‖w− u‖, where w and u are defined similarly
as in (3.15).

A natural question is whether it might be simpler to change coordinates and work
with the nearly equivalent w �→ g(‖v − w‖)/‖w − u‖, since w ∈ {z}⊥. How-
ever, P−1

{z}⊥{w} ∩ ∂K may contain multiple points, which creates many challenges.
We encountered an example of this when working with the exponential cone, where
the change of coordinates from v to w necessitates the introduction of the two real
branches of theLambertW function (see, for example, [7, 12, 14] or [48] for the closely
related Wright Omega function). With terrible effort, one can use such a parametriza-
tion to prove the FRFs forFβ, β ∈ [−∞,∞]\{β̂ := −Wprincipal(2e−2)/2}. However,
the change of branches inhibits proving the result for the exceptional number β̂. The
change of variables to v cures this problem by obviating the need for a branch function
in the analysis; see [31] for additional details. This is why we present Theorem 3.10
in terms of v. Computational investigation also pointed to the path of proof, though
the proof we present may be understood without the aid of a computer.

4.2.1 F−∞: the unique 2D face

Recall the unique 2D face of Kexp:

F−∞ := {(x, y, z) | x ≤ 0, z ≥ 0, y = 0}.

Define the piecewise modified Boltzmann–Shannon entropy g−∞ : R+ → R+ as
follows:

g−∞(t) :=

⎧
⎪⎨
⎪⎩

0 if t = 0,

−t ln(t) if t ∈ (
0, 1/e2

]
,

t + 1
e2

if t > 1/e2.

(4.14)

For more on its usefulness in optimization, see, for example, [7, 14].We note that g−∞
is monotone increasing and there exists L ≥ 1 such that the following inequalities
hold for every t ∈ R+ and M > 0:9

|t | ≤ g−∞(t), g−∞(2t) ≤ Lg−∞(t),

g−∞(Mt) ≤ L1+| log2(M)|g−∞(t). (4.15)

With that, we prove in the next theorem that γz,η is positive for F−∞, which implies
that an entropic error bound holds.

Theorem 4.2 (Entropic error bound concerning F−∞) Let z ∈ K ∗
exp with zx = zz = 0

and zy > 0 so that {z}⊥∩Kexp = F−∞ is the two-dimensional face of Kexp. Let η > 0
and let γz,η be defined as in (3.15) with g = g−∞ in (4.14). Then γz,η ∈ (0,∞] and

9 The third relation in (4.15) is derived from the second relation and the monotonicity of g−∞ as follows:
g−∞(Mt) = g−∞(2log2 M t) ≤ g−∞(2�| log2 M|�t) ≤ L�| log2 M|�g−∞(t) ≤ L1+| log2 M|g−∞(t).
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d(q,F−∞) ≤ max{2, 2γ−1
z,η } · g−∞(d(q, Kexp))

whenever q ∈ {z}⊥ ∩ B(η). (4.16)

Proof In view of Lemma 3.12, take any v̄ ∈ F−∞ and a sequence {vk} ⊂ ∂Kexp ∩
B(η)\F−∞ such that

lim
k→∞vk = lim

k→∞wk = v̄, (4.17)

where wk = P{z}⊥vk , uk = PF−∞w
k , and wk �= uk . We will show that (3.21b) does

not hold for g = g−∞.
Since vk /∈ F−∞, in view of (4.1) and (4.13), we have vk

y > 0 and

vk = (vk
x , v

k
y, v

k
yevk

x /vk
y ) = (vk

y ln(v
k
z /v

k
y), v

k
y, v

k
z ), (4.18)

where the second representation is obtained by solving for vk
x from vk

z = vk
yevk

x /vk
y > 0.

Using the second representation in (4.18), we then have

wk = (vk
y ln(v

k
z /v

k
y), 0, v

k
z ) and uk = (0, 0, vk

z ); (4.19)

here, we made use of the fact that wk �= uk , which implies that vk
y ln(v

k
z /v

k
y) > 0 and

thus the resulting formula for uk . In addition, we also note from vk
y ln(v

k
z /v

k
y) > 0

(and vk
y > 0) that

vk
z > vk

y > 0. (4.20)

Furthermore, since v̄ ∈ F−∞, we see from (4.13) and (4.17) that

lim
k→∞ vk

y = 0. (4.21)

Now, using (4.18), (4.19), (4.21) and the definition ofg−∞, we see that for k sufficiently
large,

g−∞(‖vk − wk‖)
‖uk − wk‖ = −vk

y ln(v
k
y)

vk
y ln(v

k
z /v

k
y)
= − ln(vk

y)

ln(vk
z )− ln(vk

y)
. (4.22)

We will show that (3.21b) does not hold for g = g−∞ in each of the following cases.

(I) v̄z > 0.
(II) v̄z = 0.

(I): In this case, we deduce from (4.21) and (4.22) that

lim
k→∞

g−∞(‖vk − wk‖)
‖uk − wk‖ = 1.
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Thus (3.21b) does not hold for g = g−∞.
(II): By passing to a subsequence if necessary, we may assume that vk

z < 1 for all k.

This together with (4.20) gives
ln(vk

z )

ln(vk
y)
∈ (0, 1) for all k. Thus, we conclude from (4.22)

that for all k,

g−∞(‖vk − wk‖)
‖uk − wk‖ = − ln(vk

y)

ln(vk
z )− ln(vk

y)
= 1

1− ln(vk
z )

ln(vk
y)

> 1.

Consequently, (3.21b) also fails for g = g−∞ in this case.
Having shown that (3.21b) does not hold for g = g−∞ in any case, we conclude

by Lemma 3.12 that γz,η ∈ (0,∞]. With that, (4.16) follows from Theorem 3.10 and
(4.15). ��
Using Theorem 4.2, we can also show weaker Hölderian error bounds.

Corollary 4.3 Let z ∈ K ∗
exp with zx = zz = 0 and zy > 0 so that {z}⊥ ∩ Kexp = F−∞

is the two-dimensional face of Kexp. Let η > 0, α ∈ (0, 1), and γz,η be as in (3.15)
with g = | · |α . Then γz,η ∈ (0,∞] and

d(q,F−∞) ≤ max{2η1−α, 2γ−1
z,η } · d(q, Kexp)

α whenever q ∈ {z}⊥ ∩ B(η).

Proof Suppose that γz,η = 0 and let sequences {vk}, {wk}, {uk} be as in Lemma 3.12.
Then vk �= wk for all k because {vk} ⊂ Kexp\F−∞, {wk} ⊂ {z}⊥, and F−∞ =
Kexp ∩ {z}⊥. Since g−∞(t)/|t |α ↓ 0 as t ↓ 0 we have

lim inf
k→∞

g−∞(‖wk − vk‖)
‖wk − uk‖ = lim inf

k→∞
g−∞(‖wk − vk‖)
‖wk − vk‖α

‖wk − vk‖α

‖wk − uk‖ = 0,

which contradicts Theorem 4.2 because the quantity in (3.15) should be positive for
g = g−∞. ��

Recalling (4.15), we obtain one-step facial residual functions using Theorem 4.2
and Corollary 4.3 in combination with Theorem 3.10, Remark 3.11 and Lemma 3.9.

Corollary 4.4 (1-FRF concerningF−∞)Let z ∈ K ∗
exp be such that {z}⊥∩Kexp = F−∞

is the two-dimensional face of Kexp. Let g = g−∞ in (4.14) or g = | · |α for α ∈ (0, 1).
Let κz,t be defined as in (3.16). Then the function ψK,z : R+ × R+ → R+ given

by

ψK,z(ε, t) := max {ε, ε/‖z‖} + κz,tg(ε +max {ε, ε/‖z‖})

is a 1-FRF for Kexp and z. In particular, there exist κ > 0 and a nonnegative mono-
tone nondecreasing function ρ : R+ → R+ such that the function ψ̂K,z given by
ψ̂K,z(ε, t):=κε + ρ(t)g(ε) is a 1-FRF for Kexp and z.
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4.2.2 Fˇ: the family of one-dimensional facesˇ ∈ R

Recall from Proposition 4.1 that for each β ∈ R,

Fβ :=
{(
−β y + y, y, e1−β y

) ∣∣∣∣ y ∈ [0,∞)

}

is a one-dimensional face of Kexp. We will now show that for Fβ , β ∈ R, the γz,η

defined in Theorem 3.10 is positive when g = | · | 12 . Our discussion will be centered
around the following quantities, which were also defined and used in the proof of
Theorem 3.10. Specifically, for z ∈ K ∗

exp such that Fβ = Kexp ∩ {z}⊥, we let v ∈
∂Kexp ∩ B(η)\Fβ and define

w := P{z}⊥v and u := PFβ
w. (4.23)

We first note the following three important vectors:

ẑ :=
⎡
⎣

1
β

−eβ−1

⎤
⎦ , f̂ =

⎡
⎣
1− β

1
e1−β

⎤
⎦ , p̂ =

⎡
⎣

βe1−β + eβ−1

−e1−β − (1− β)eβ−1

β2 − β + 1

⎤
⎦ . (4.24)

Note that ẑ is parallel to z in (4.6) (recall that zx < 0 forFβ , whereβ := zy
zx
∈ R),Fβ is

the conic hull of {̂f} according to Proposition 4.1, 〈̂z, f̂〉 = 0 and p̂ = ẑ× f̂ �= 0. These
three nonzero vectors form a mutually orthogonal set. The next lemma represents
‖u − w‖ and ‖w − v‖ in terms of inner products of v with these vectors, whenever
possible.

Lemma 4.5 Let β ∈ R and z ∈ K ∗
exp with zx < 0 such that Fβ = {z}⊥ ∩ Kexp is a

one-dimensional face of Kexp. Let η > 0, v ∈ ∂Kexp ∩ B(η)\Fβ and define w and u
as in (4.23). Let {̂z, f̂, p̂} be as in (4.24). Then

‖w− v‖ = |〈̂z, v〉|
‖̂z‖ and ‖w− u‖ =

{ |〈̂p,v〉|
‖̂p‖ if 〈̂f, v〉 ≥ 0,

‖w‖ otherwise.

Moreover, when 〈̂f, v〉 ≥ 0, we have u = PspanFβ
w.

Proof Since {̂z, f̂, p̂} is orthogonal, one can decompose v as

v = λ1̂z+ λ2̂f+ λ3p̂, (4.25)

with

λ1 = 〈̂z, v〉/‖̂z‖2, λ2 = 〈̂f, v〉/‖̂f‖2 and λ3 = 〈̂p, v〉/‖̂p‖2. (4.26)

Also, since ẑ is parallel to z, we must have w = λ2̂f + λ3p̂. Thus, it holds that
‖w− v‖ = |λ1|‖̂z‖ and the first conclusion follows from this and (4.26).
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Next, we have u = t̂ f̂, where

t̂ = argmint≥0‖w− t̂f‖ =
{ 〈w,̂f〉
‖̂f‖2 if 〈̂f,w〉 ≥ 0,

0 otherwise.

Moreover, observe from (4.25) that 〈̂f,w〉 = 〈̂f, v − λ1̂z〉 = 〈̂f, v〉. These mean that

when 〈̂f, v〉 < 0, we have u = 0, while when 〈̂f, v〉 ≥ 0, we have u = 〈w,̂f〉
‖̂f‖2 f̂ =

PspanFβ
w and

‖w− u‖ =
∥∥∥∥w− 〈w, f̂〉

‖̂f‖2 f̂

∥∥∥∥ = |λ3|‖̂p‖ = |〈̂p, v〉|/‖̂p‖,

where the second and the third equalities follow from (4.25), (4.26), and the fact that
w = λ2̂f+ λ3p̂. This completes the proof. ��

We now prove our main theorem in this section.

Theorem 4.6 (Hölderian error bound concerning Fβ , β ∈ R) Let β ∈ R and z ∈ K ∗
exp

with zx < 0 such that Fβ = {z}⊥ ∩ Kexp is a one-dimensional face of Kexp. Let η > 0

and let γz,η be defined as in (3.15) with g = | · | 12 . Then γz,η ∈ (0,∞] and

d(q,Fβ) ≤ max
{
2
√

η, 2γ−1
z,η

}
· d(q, Kexp)

1
2 whenever q ∈ {z}⊥ ∩ B(η).

Proof In view of Lemma 3.12, take any v̄ ∈ Fβ and a sequence {vk} ⊂ ∂Kexp ∩
B(η)\Fβ such that

lim
k→∞vk = lim

k→∞wk = v̄, (4.27)

where wk = P{z}⊥vk , uk = PFβ
wk , and wk �= uk . We will show that (3.21b) does not

hold for g = | · | 12 .
We first suppose that vk ∈ F−∞ infinitely often. By extracting a subsequence if

necessary, we may assume that vk ∈ F−∞ for all k. From the definition of F−∞ in
(4.13), we have vk

x ≤ 0, vk
y = 0 and vk

z ≥ 0. Thus, recalling the definition of ẑ in
(4.24), it holds that

|〈̂z, vk〉| = |vk
x − vk

z eβ−1| = −vk
x + vk

z eβ−1 = |vk
x | + eβ−1|vk

z |
≥ min{1, eβ−1}

√
|vk

x |2 + |vk
z |2 = min{1, eβ−1}‖vk‖,

(4.28)

where the last equality holds because vk
y = 0. Next, using properties of projections

onto subspaces, we have ‖wk‖ ≤ ‖vk‖. This together with Lemma 4.5 and (4.28)
shows that
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‖wk − uk‖ = d(wk,Fβ) ≤ ‖wk‖ ≤ ‖vk‖ ≤ 1

min{1, eβ−1} |〈̂z, v
k〉|

= ‖̂z‖
min{1, eβ−1}‖w

k − vk‖.

Since wk → v̄ and vk → v̄, the above display shows that (3.21b) does not hold for

g = | · | 12 in this case.
Next, suppose that vk /∈ F−∞ for all large k instead. By passing to a subsequence,

we assume that vk /∈ F−∞ for all k. In view of (4.1) and (4.13), this means in particular
that

vk = (vk
x , v

k
y, v

k
yevk

x /vk
y ) and vk

y > 0 for all k. (4.29)

We consider two cases and show that (3.21b) does not hold for g = | · | 12 in either
of them:

(I) 〈̂f, vk〉 ≥ 0 infinitely often;
(II) 〈̂f, vk〉 < 0 for all large k.

(I): Since 〈̂f, vk〉 ≥ 0 infinitely often, by extracting a subsequence if necessary, we
assume that 〈̂f, vk〉 ≥ 0 for all k. Now, consider the following functions:

h1(ζ ) := ζ + β − eβ+ζ−1,

h2(ζ ) := (βe1−β + eβ−1)ζ − e1−β − (1− β)eβ−1 + (β2 − β + 1)eζ .

Using these functions, Lemma 4.5, (4.24) and (4.29), one can see immediately that

‖wk − vk‖ = |〈̂z, vk〉|
‖̂z‖ = vk

y |h1(v
k
x/v

k
y)|

‖̂z‖ ,

‖wk − uk‖ = |〈̂p, vk〉|
‖̂p‖ = vk

y |h2(v
k
x/v

k
y)|

‖̂p‖ .

(4.30)

Note that h1 is zero if and only if ζ = 1−β. Furthermore, we have h′1(1−β) = 0
and h′′1(1− β) = −1. Then, considering the Taylor expansion of h1 around 1− β we
have

h1(ζ ) = 1+ (ζ + β − 1)− eβ+ζ−1 = − (ζ + β − 1)2

2
+ O(|ζ + β − 1|3) as ζ → 1− β.

Also, one can check that h2(1− β) = 0 and that

h′2(1− β) = βe1−β + eβ−1 + (β2 − β + 1)e1−β = eβ−1 + (β2 + 1)e1−β > 0.

Therefore, we have the following Taylor expansion of h2 around 1− β:
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h2(ζ )=(eβ−1+(β2 + 1)e1−β)(ζ + β − 1)

+O(|ζ + β − 1|2)
as ζ → 1− β. (4.31)

Thus, using the Taylor expansions of h1 and h2 at 1− β we have

lim
ζ→1−β

|h1(ζ )| 12
|h2(ζ )| = 1√

2(eβ−1 + (β2 + 1)e1−β)
> 0. (4.32)

Hence, there exist Ch > 0 and ε > 0 so that

|h1(ζ )| 12 ≥ Ch |h2(ζ )| whenever |ζ − (1− β)| ≤ ε. (4.33)

Next, consider the following function10

H(ζ ) :=
{ |h1(ζ )|
|h2(ζ )| if |ζ − (1− β)| ≥ ε, h2(ζ ) �= 0,

∞ otherwise.

Then it is easy to check that H is proper closed and is never zero. Moreover, by direct
computation, we have lim

ζ→∞ H(ζ ) = eβ−1

β2−β+1
> 0 and

lim
ζ→−∞ H(ζ ) =

{
|βe1−β + eβ−1|−1 if βe1−β + eβ−1 �= 0,

∞ otherwise.

Thus, we deduce that inf H > 0.
Now, if it happens that |vk

x/v
k
y−(1−β)| > ε for all large k, upon letting ζk := vk

x/v
k
y ,

we have from (4.30) that for all large k,

‖wk − vk‖
‖wk − uk‖ =

‖̂p‖
‖̂z‖

|h1(ζk)|
|h2(ζk)| =

‖̂p‖
‖̂z‖ H(ζk) ≥ ‖̂p‖

‖̂z‖ inf H > 0, (4.34)

where the second equality holds because of the definition of H and the facts that
wk �= uk (so that h2(ζk) �= 0 by (4.30)) and |vk

x/v
k
y − (1− β)| > ε for all large k.

On the other hand, if it holds that |vk
x/v

k
y − (1 − β)| ≤ ε infinitely often, then by

extracting a further subsequence, we may assume that |vk
x/v

k
y − (1 − β)| ≤ ε for all

k. Upon letting ζk := vk
x/v

k
y , we have from (4.30) that

‖wk − uk‖
‖wk − vk‖ 1

2

=
√

vk
y ‖̂z‖
‖̂p‖

|h2(ζk)|
|h1(ζk)| 12

≤
√

vk
y ‖̂z‖

Ch ‖̂p‖ ≤
√

η‖̂z‖
Ch ‖̂p‖ , (4.35)

10 Notice that this function is well defined because h1 is zero only at 1 − β and thus we will not end up
with 0

0 .
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where the first inequality holds thanks to |vk
x/v

k
y − (1− β)| ≤ ε for all k, (4.33) and

the fact that wk �= uk (so that h2(ζk) �= 0 and hence h1(ζk) �= 0), and the second
inequality holds because vk ∈ B(η).

Using (4.34) and (4.35) together with (4.27), we see that (3.21b) does not hold for

g = | · | 12 . This concludes case (I).
(II): By passing to a subsequence, we may assume that 〈̂f, vk〉 < 0 for all k. Then

we see from (4.24) and (4.29) that

(1− β)
vk

x

vk
y
+ 1+ e1−βevk

x /vk
y = 1

vk
y
〈̂f, vk〉 < 0.

Using this together with the fact that (1−β)2+1+ e2(1−β) > 0, we deduce that there
exists ε > 0 so that

∣∣∣∣∣
vk

x

vk
y
− (1− β)

∣∣∣∣∣ ≥ ε for all k. (4.36)

Now, consider the following function

G(ζ ) := |ζ + β − eβ+ζ−1|√
ζ 2 + 1+ e2ζ

.

Then G is continuous and is zero if and only if ζ = 1 − β. Moreover, by direct
computation, we have limζ→∞ G(ζ ) = eβ−1 > 0 and limζ→−∞ G(ζ ) = 1 > 0.
Thus, it follows that

G := inf|ζ+β−1|≥ε
G(ζ ) > 0. (4.37)

Finally, since 〈̂f, vk〉 < 0 for all k, we see that

‖wk − vk‖
‖wk − uk‖

(a)≥ ‖wk − vk‖
‖vk‖

(b)= |̂zxv
k
x + ẑ yv

k
y + ẑzv

k
yevk

x /vk
y |

‖̂z‖
√

(vk
x )

2 + (vk
y)

2 + (vk
y)

2e2v
k
x /vk

y

(c)= |̂zxζk + ẑ y + ẑzeζk |
‖̂z‖√(ζk)2 + 1+ e2ζk

(d)= 1

‖̂z‖G(ζk)
(e)≥ 1

‖̂z‖G > 0,

where (a) follows from ‖wk − uk‖ = ‖wk‖ (see Lemma 4.5) and ‖wk‖ ≤ ‖vk‖
(because wk is the projection of vk onto a subspace), (b) follows from Lemma 4.5 and
(4.29), (c) holds because vk

y > 0 (see (4.29)) and we defined ζk := vk
x/v

k
y , (d) follows

from (4.24) and the definition of G, and (e) follows from (4.36) and (4.37). The above
together with (4.27) shows that (3.21b) does not hold for g = | · | 12 , which is what we
wanted to show in case (II).
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Summarizing the above cases, we conclude that there does not exist the sequence

{vk} and its associates so that (3.21b) holds for g = |· | 12 . By Lemma 3.12, it must then
hold that γz,η ∈ (0,∞] and we have the desired error bound in view of Theorem 3.10.
This completes the proof. ��

Combining Theorems 4.6, 3.10 and Lemma 3.9, and using the observation that
γz,0 = ∞ (see (3.15)), we obtain a one-step facial residual function in the following
corollary.

Corollary 4.7 (1-FRF concerning Fβ , β ∈ R) Let β ∈ R and z ∈ K ∗
exp with zx < 0

such that Fβ = {z}⊥ ∩ Kexp is a one-dimensional face of Kexp. Let κz,t be defined as

in (3.16) with g = | · | 12 . Then the function ψK,z : R+ × R+ → R+ given by

ψK,z(ε, t) := max {ε, ε/‖z‖} + κz,t (ε +max {ε, ε/‖z‖}) 1
2

is a 1-FRF for Kexp. In particular, there exist κ > 0 and a nonnegative mono-
tone nondecreasing function ρ : R+ → R+ such that the function ψ̂K,z given by
ψ̂K,z(ε, t):=κε + ρ(t)

√
ε is a 1-FRF for Kexp and z.

4.2.3 F∞: the exceptional one-dimensional face

Recall the special one-dimensional face of Kexp defined by

F∞ := {(x, 0, 0) | x ≤ 0}.

We first show that we have a Lipschitz error bound for any exposing normal vectors
z = (0, zy, zz) with zy > 0 and zz > 0.

Theorem 4.8 (Lipschitz error bound concerning F∞) Let z ∈ K ∗
exp with zx = 0,

zy > 0 and zz > 0 so that {z}⊥ ∩ Kexp = F∞. Let η > 0 and let γz,η be defined as in
(3.15) with g = | · |. Then γz,η ∈ (0,∞] and

d(q,F∞) ≤ max{2, 2γ−1
z,η } · d(q, Kexp) whenever q ∈ {z}⊥ ∩ B(η).

Proof Without loss of generality, upon scaling, we may assume that z = (0, a, 1) for
some a > 0. Similarly as in the proof of Theorem 4.6, we will consider the following
vectors:

z̃ :=
⎡
⎣
0
a
1

⎤
⎦ , f̃ :=

⎡
⎣
−1
0
0

⎤
⎦ , p̃ :=

⎡
⎣

0
1
−a

⎤
⎦ .

Here, F∞ is the conical hull of f̃ (see (4.12)), and p̃ is constructed so that {̃z, f̃, p̃} is
orthogonal.
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Now, let v ∈ ∂Kexp ∩ B(η)\F∞, w = P{z}⊥v and u = PF∞w with u �= w. Then,
as in Lemma 4.5, by decomposing v as a linear combination of {̃z, f̃, p̃}, we have

‖w− v‖ = |〈̃z, v〉|
‖̃z‖ and ‖w− u‖ =

{ |〈̃p,v〉|
‖̃p‖ if 〈̃f, v〉 ≥ 0,

‖w‖ otherwise.
(4.38)

We consider the following cases for estimating γz,η.

(I) v ∈ F−∞\F∞;
(II) v /∈ F−∞ with vx ≤ 0;
(III) v /∈ F−∞ with vx > 0.

(I): In this case, v = (vx , 0, vz)with vx ≤ 0 ≤ vz ; see (4.13). Then 〈̃f, v〉 = −vx ≥
0 and |〈̃z, v〉| = |vz | = 1

a |〈̃p, v〉|. Consequently, we have from (4.38) that

‖w− v‖ = |〈̃z, v〉|
‖̃z‖ = |〈̃p, v〉|

a‖̃z‖ = ‖̃p‖
a‖̃z‖‖w− u‖.

(II): In this case, in view of (4.1) and (4.13), we have v = (vx , vy, vyevx /vy ) with
vx ≤ 0 and vy > 0. Then 〈̃f, v〉 = −vx ≥ 0. Moreover, since vy > 0, we have

|〈̃z, v〉| = |avy + vyevx /vy | = avy + vyevx /vy ≥ min{1, a}(vy + vyevx /vy )

≥ min{1, a}
max{1, a} (vy + avyevx /vy ) ≥ min{1, a}

max{1, a} |vy − avyevx /vy |

= min{1, a}
max{1, a} |〈̃p, v〉|.

Using (4.38), we then obtain that ‖w− v‖ ≥ min{1,a}‖̃p‖
max{1,a}‖̃z‖‖w− u‖.

(III): In this case, in view of (4.1) and (4.13), v = (vx , vy, vyevx /vy ) with vx > 0
and vy > 0. Then 〈̃f, v〉 = −vx < 0 and hence ‖w − u‖ = ‖w‖ ≤ ‖v‖, where the
equality follows from (4.38) and the inequality holds because w is the projection of v
onto a subspace. Since vy > 0, we have

|〈̃z, v〉| = |avy + vyevx /vy | = avy + 0.5vyevx /vy + 0.5vyevx /vy

(a)≥ avy + 0.5vy(1+ vx/vy)+ 0.5vyevx /vy

≥ 0.5vy + 0.5vx + 0.5vyevx /vy

= 0.5‖v‖1,

where we used vy > 0 and et ≥ 1+ t for all t in (a) and ‖v‖1 denotes the 1-norm of
v. Combining this with (4.38) and the fact that ‖w‖ ≤ ‖v‖, we see that

‖w− v‖ = |〈̃z, v〉|
‖̃z‖ ≥ ‖v‖1

2‖̃z‖ ≥
‖v‖
2‖̃z‖ ≥

‖w‖
2‖̃z‖ =

‖w− u‖
2‖̃z‖ .
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Summarizing the three cases, we conclude that

γz,η ≥ min

{ ‖̃p‖
a‖̃z‖ ,

min{1, a}‖̃p‖
max{1, a}‖̃z‖ ,

1

2‖̃z‖
}

> 0.

In view of Theorem 3.10, we have the desired error bound. This completes the proof.
��

Wenext turn to the supporting hyperplane defined by z = (0, 0, zz) for some zz > 0
and so {z}⊥ is the xy-plane. The following lemma demonstrates that the Hölderian-
type error bound in the form of (3.16) with g = | · |α for some α ∈ (0, 1] no longer
works in this case.

Lemma 4.9 (Nonexistence of Hölderian error bounds) Let z ∈ K ∗
exp with zx = zy = 0

and zz > 0 so that {z}⊥ ∩ Kexp = F∞. Let α ∈ (0, 1] and η > 0. Then

inf
q

{
d(q, Kexp)

α

d(q,F∞)

∣∣∣∣ q ∈ {z}⊥ ∩ B(η)\F∞
}
= 0.

Proof For each k ∈ N, letqk := (− η
2 ,

η
2k , 0). Thenqk ∈ {z}⊥∩B(η)\F∞ andwe have

d(qk,F∞) = η
2k . Moreover, since (qk

x , qk
y , qk

y eqk
x /qk

y ) ∈ Kexp, we have d(qk, Kexp) ≤
qk

y eqk
x /qk

y = η
2k e−k . Then it holds that

d(qk, Kexp)
α

d(qk,F∞)
≤ ηα−1

2α−1 k1−αe−αk → 0 as k →∞

since α ∈ (0, 1]. This completes the proof. ��
Since a zero-at-zero monotone nondecreasing function of the form (·)α no longer

works, we opt for the following function g∞ : R+ → R+ that grows faster around
t = 0:

g∞(t) :=

⎧
⎪⎨
⎪⎩

0 if t = 0,

− 1
ln(t) if 0 < t ≤ 1

e2
,

1
4 + 1

4e2t if t > 1
e2

.

(4.39)

Similar to g−∞ in (4.14), g∞ is monotone increasing and there exists a constant L̂ ≥ 1
such that the following inequalities hold for every t ∈ R+ and M > 0:

|t | ≤ g∞(t), g∞(2t) ≤ L̂g∞(t), g∞(Mt) ≤ L̂1+| log2(M)|g∞(t). (4.40)

We next show that error bounds in the form of (3.16) holds for z = (0, 0, zz), zz > 0,
if we use g∞.
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Theorem 4.10 (Log-type error bound concerningF∞) Let z ∈ K ∗
exp with zx = zy = 0

and zz > 0 so that {z}⊥ ∩ Kexp = F∞. Let η > 0 and let γz,η be defined as in (3.15)
with g = g∞ in (4.39). Then γz,η ∈ (0,∞] and

d(q,F∞) ≤ max{2, 2γ−1
z,η } · g∞(d(q, Kexp)) whenever q ∈ {z}⊥ ∩ B(η).

Proof Take v̄ ∈ F∞ and a sequence {vk} ⊂ ∂Kexp ∩ B(η)\F∞ such that

lim
k→∞vk = lim

k→∞wk = v̄,

where wk = P{z}⊥vk , uk = PF∞w
k , and wk �= uk . Since wk �= uk , in view of (4.12)

and (4.13), we must have vk /∈ F−∞. Then, from (4.1) and (4.12), we have

vk = (vk
x , v

k
y, v

k
yevk

x /vk
y ) with vk

y > 0,

wk = (vk
x , v

k
y, 0) and uk = (min{vk

x , 0}, 0, 0).
(4.41)

Since wk → v̄ and vk → v̄, without loss of generality, by passing to a subsequence
if necessary, we assume in addition that ‖wk − vk‖ ≤ e−2 for all k. From (4.41) we
conclude that vk �= wk , hence g∞(‖wk − vk‖) = −(ln ‖wk − vk‖)−1.

We consider the following two cases in order to show that (3.21b) does not hold
for g = g∞:

(I) v̄ �= 0;
(II) v̄ = 0.

(I): In this case, we have v̄ = (v̄x , 0, 0) for some v̄x < 0. This implies that vk
x < 0

for all large k. Hence, we have from (4.41) that for all large k,

g∞(‖wk − vk‖)
‖wk − uk‖ = −(ln ‖wk − vk‖)−1

‖wk − uk‖ = − 1

vk
y

(
vk

x/v
k
y + ln vk

y

)

= − 1

vk
y ln vk

y + vk
x
→− 1

v̄x
> 0

since vk
y → 0 and vk

x → v̄x < 0. This shows that (3.21b) does not hold for g = g∞.
(II): If vk

x ≤ 0 infinitely often, by extracting a subsequence, we assume that vk
x ≤ 0

for all k. Since wk �= uk (and wk �= vk), we note from (4.41) that

− 1

vk
y ln vk

y + vk
x
= −(ln ‖wk − vk‖)−1

‖wk − uk‖ ∈ (0,∞) for all k.

Since {−(vk
y ln vk

y+vk
x )} is a positive sequence and it converges to zero as (vk

x , v
k
y) → 0,

it follows that limk→∞ −(ln ‖wk−vk‖)−1

‖wk−uk‖ = ∞. This shows that (3.21b) does not hold
for g = g∞.
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Now, it remains to consider the case that vk
x > 0 for all large k. By passing to a

subsequence if necessary, we assume that vk
x > 0 for all k. By solving for vk

x from

vk
z = vk

yevk
x /vk

y > 0 and noting (4.41), we obtain that

vk = (vk
y ln(v

k
z /v

k
y), v

k
y, v

k
z ) with vk

y > 0,

wk = (vk
y ln(v

k
z /v

k
y), v

k
y, 0) and uk = (0, 0, 0).

(4.42)

Also, we note from vk
x = vk

y ln(v
k
z /v

k
y) > 0, vk

y > 0 and the monotonicity of ln(·) that
for all k,

vk
z > vk

y > 0. (4.43)

Next consider the function h(t) := 1
t

√
1+ (ln t)2 on [1,∞). Then h is continuous and

positive. Since h(1) = 1 and limt→∞ h(t) = 0, there exists Mh such that h(t) ≤ Mh

for all t ≥ 1. Now, using (4.42), we have, upon defining tk := vk
z /v

k
y that

‖wk − uk‖
−(ln ‖wk − vk‖)−1 =

vk
y

√
1+ [ln(vk

z /v
k
y)]2

−(ln vk
z )
−1 = −vk

y

√
1+ [ln(vk

z /v
k
y)]2 ln vk

z

(a)= −vk
y

vk
z

√√√√1+
[
ln

(
vk

z

vk
y

)]2

vk
z ln vk

z
(b)= −h(tk)v

k
z ln vk

z

(c)≤ −Mhvk
z ln vk

z ,

where the division by vk
z in (a) is legitimate because vk

z > 0, (b) follows from the
definition of h and the fact that tk > 1 (see (4.43)), and (c) holds because of the
definition of Mh and the fact that− ln vk

z > 0 (thanks to vk
z = ‖wk−vk‖ ≤ e−2). Since

vk
z → 0, it then follows that

{ ‖wk−uk‖
−(ln ‖wk−vk‖)−1

}
is a positive sequence that converges

to zero. Thus, limk→∞ −(ln ‖wk−vk‖)−1

‖wk−uk‖ = ∞, which again shows that (3.21b) does not
hold for g = g∞.

Having shown that (3.21b) does not hold for g = g∞, in view of Lemma 3.12, we
must have γz,η ∈ (0,∞]. Then the result follows from Theorem 3.10 and (4.40). ��

Combining Theorem 4.8, Theorem 4.10 and Lemma 3.9, and noting (4.40) and
γz,0 = ∞ (see (3.15)), we can now summarize the one-step facial residual functions
derived in this section in the following corollary.

Corollary 4.11 (1-FRF concerning F∞) Let z ∈ K ∗
exp with zx = 0 and {z}⊥ ∩ Kexp =

F∞.

(i) In the case when zy > 0, let κz,t be defined as in (3.16) with g = | · |. Then the
function ψK,z : R+ × R+ → R+ given by

ψK,z(ε, t) := max {ε, ε/‖z‖} + κz,t (ε +max {ε, ε/‖z‖})
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is a 1-FRF for Kexp and z. In particular, there exist κ > 0 and a nonnegative
monotone nondecreasing function ρ : R+ → R+ such that the function ψ̂K,z

given by ψ̂K,z(ε, t):=κε + ρ(t)ε is a 1-FRF for Kexp and z.
(ii) In the case when zy = 0, let κz,t be defined as in (3.16) with g = g∞ in (4.39).

Then the function ψK,z : R+ × R+ → R+ given by

ψK,z(ε, t) := max {ε, ε/‖z‖} + κz,tg∞(ε +max {ε, ε/‖z‖})

is a 1-FRF for Kexp and z. In particular, there exist κ > 0 and a nonnegative
monotone nondecreasing function ρ : R+ → R+ such that the function ψ̂K,z

given by ψ̂K,z(ε, t):=κε + ρ(t)g∞(ε) is a 1-FRF for Kexp and z.

4.2.4 The non-exposed faceFne

Recall the unique non-exposed face of Kexp:

Fne := {(0, 0, z) | z ≥ 0}.

In this subsection, we take a look at Fne. Note that Fne is an exposed face of F−∞,
which is polyhedral. This observation leads immediately to the following corollary,
which also follows from [34, Proposition 18] by letting F :=K:=F−∞ therein. We
omit the proof for brevity.

Corollary 4.12 (1-FRF for Fne) Let z ∈ F∗−∞ be such that Fne = F−∞ ∩ {z}⊥. Then
there exists κ > 0 such that

ψF−∞,z(ε, t):=κε

is a 1-FRF for F−∞ and z.

4.3 Error bounds

In this subsection, we return to the feasibility problem (Feas) and consider the case
where K = Kexp. We now have all the tools for obtaining error bounds. Recalling
Definition 2.1, we can state the following result.

Theorem 4.13 (Error bounds for (Feas) with K = Kexp) Let L ⊆ R
3 be a subspace

and a ∈ R
3 such that (L+ a) ∩ Kexp �= ∅. Then the following items hold.

(i) The distance to the PPS condition of {Kexp,L+a} satisfies dPPS(Kexp,L+a) ≤ 1.
(ii) If dPPS(Kexp,L+a) = 0, then Kexp andL+a satisfy a Lipschitzian error bound.

(iii) Suppose dPPS(Kexp,L + a) = 1 and let F � Kexp be a chain of faces of
length 2 satisfying items (ii) and (iii) of Proposition 3.2. We have the following
possibilities.

(a) If F = F−∞ then Kexp and L+ a satisfy an entropic error bound as in (4.44).
In addition, for all α ∈ (0, 1), a uniform Hölderian error bound with exponent
α holds.

123



Error bounds, facial residual functions and...

(b) If F = Fβ , with β ∈ R, then Kexp and L + a satisfy a uniform Hölderian
error bound with exponent 1/2.

(c) Suppose that F = F∞. If there exists z ∈ K ∗
exp ∩ L⊥ ∩ {a}⊥ with zx = 0,

zy > 0 and zz > 0 then Kexp and L + a satisfy a Lipschitzian error bound.
Otherwise, Kexp and L+ a satisfy a log-type error bound as in (4.45).

(d) If F = {0}, then Kexp and L+ a satisfy a Lipschitzian error bound.

Proof (i): All proper faces of Kexp are polyhedral, therefore �poly(Kexp) = 1. By
item (i) of Proposition 3.2, there exists a chain of length 2 satisfying item (iii)
of Proposition 3.2. Therefore, dPPS(Kexp,L+ a) ≤ 1.

(ii): If dPPS(Kexp,L+a) = 0, it is because {Kexp,L+a} satisfies the PPS condition,
which implies a Lipschitzian error bound by Proposition 2.2.

(iii): Next, suppose dPPS(Kexp,L + a) = 1 and let F � Kexp be a chain of faces
of length 2 satisfying items (ii) and (iii) of Proposition 3.2, together with z ∈
K ∗
exp ∩ L⊥ ∩ {a}⊥ such that

F = Kexp ∩ {z}⊥.

Since positively scaling z does not affect the chain of faces, we may assume that
‖z‖ = 1. Also, in what follows, for simplicity, we define

d̂(x):=max{d(x,L+ a), d(x, Kexp)}.

Then, we prove each item by applying Theorem 3.8 with the corresponding facial
residual function.

(a) If F = F−∞, the one-step facial residual functions are given by Corollary 4.4.
First we consider the case where g = g−∞ and we have

ψK,z(ε, t) := ε + κz,tg−∞(2ε),

where g−∞ is as in (4.14). Then, if ψ is a positively rescaled shift of ψK,z, using
the monotonicity of g−∞ and of κz,t as a function of t , we conclude that there
exists M̂ > 0 such that

ψ(ε, t) ≤ M̂ε + M̂κz,M̂tg−∞(M̂ε).

Invoking Theorem 3.8, using the monotonicity of all functions involved in the
definition of ψ and recalling (4.15), we conclude that for every bounded set B,
there exists κB > 0

d
(
x, (L+ a) ∩ Kexp

) ≤ κBg−∞(̂d(x)), ∀x ∈ B, (4.44)

which shows that an entropic error bound holds.
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Next, we consider the case g = | · |α . Given α ∈ (0, 1), we have the following
one-step facial residual function:

ψK,z(ε, t) := ε + κz,t2
αεα,

where κz,t is defined as in (3.16). Invoking Theorem 3.8, we conclude that for
every bounded set B, there exists κB > 0 such that

d
(
x, (L+ a) ∩ Kexp

) ≤ κB d̂(x)+ κB d̂(x)α, ∀x ∈ B,

In addition, for x ∈ B, we have d̂(x) ≤ d̂(x)α M , where M = supx∈B d̂(x)1−α .
In conclusion, for κ = 2κB max{M, 1}, we have

d
(
x, (L+ a) ∩ Kexp

) ≤ κ d̂(x)α, ∀x ∈ B.

That is, a uniform Hölderian error bound holds with exponent α.
(b) If F = Fβ , with β ∈ R, then the one-step facial residual function is given by

Corollary 4.7, that is, we have

ψK,z(ε, t) := ε + κz,t
√
2ε1/2,

Then, following the same argument as in the second half of item (a), we conclude
that a uniform Hölderian error bound holds with exponent 1/2.

(c) If F = F∞, the one-step facial residual functions are given by Corollary 4.11
and they depend on z. Since F = F∞, we must have zx = 0 and zz > 0, see
Sect. 4.1.1.
The deciding factor is whether zy is positive or zero. If zy > 0, then we have the
following one-step facial residual function:

ψK,z(ε, t) := (1+ 2κz,t )ε,

where κz,t is defined as in (3.16). In this case, analogously to items (a) and (b)
we have a Lipschitzian error bound.
If zy = 0, we have

ψK,z(ε, t) := ε + κz,tg∞(2ε),

where g∞ is as in (4.39). Analogous to the proof of item (a) but making use of
(4.40) in place of (4.15), we conclude that for every bounded set B, there exists
κB > 0 such that

d
(
x, (L+ a) ∩ Kexp

) ≤ κBg∞(̂d(x))), ∀x ∈ B. (4.45)

(d) See [34, Proposition 27].

��
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Remark 4.14 (Tightness of Theorem 4.13)We will argue that Theorem 4.13 is tight by
showing that for every situation described in item (iii), there is a specific choice of L
and a sequence {wk} inL\Kexp with d(wk, Kexp) → 0 along which the corresponding
error bound for Kexp and L is off by at most a multiplicative constant.

(a) Let L = spanF−∞ = {(x, y, z) | y = 0} (see (4.5)) and consider the sequence
{wk}wherewk = ((1/(k+1)) ln(k+1), 0, 1), for every k ∈ N. Then,L∩Kexp =
F−∞ and we are under the conditions of item (iii)(a) of Theorem 4.13. Since
{wk} =: B ⊆ L, there exists κB > 0 such that

d
(
wk,L ∩ Kexp

)
≤ κBg−∞(d(wk, Kexp)), ∀k ∈ N.

Then, the projection of wk onto F−∞ is given by (0, 0, 1). Therefore,

ln(k + 1)

k + 1
= d(wk,L ∩ Kexp) ≤ κBg−∞(d(wk, Kexp)).

Let vk = ((1/(k + 1)) ln(k + 1), 1/(k + 1), 1) for every k. Then, we have
vk ∈ Kexp. Therefore, d(wk, Kexp) ≤ 1/(k+1). In view of the definition of g−∞
(see (4.14)), we conclude that for large enough k we have

ln(k + 1)

k + 1
= d(wk,L ∩ Kexp) ≤ κBg−∞(d(wk, Kexp)) ≤ κB

ln(k + 1)

k + 1
.

Thus, it holds that for all sufficiently large k,

1 ≤ d(wk,L ∩ Kexp)

g−∞(d(wk, Kexp))
≤ κB .

Consequently, for any given nonnegative function g : R+ → R+ such that
limt↓0 g(t)

g−∞(t) = 0, we have upon noting d(wk, Kexp) → 0 that

d(wk,L ∩ Kexp)

g(d(wk, Kexp))
= d(wk,L ∩ Kexp)

g−∞(d(wk, Kexp))

g−∞(d(wk, Kexp))

g(d(wk, Kexp))
→∞,

which shows that the choice of g−∞ in the error bound is tight.
(b) Let β ∈ R and let ẑ, p̂ and f̂ be as in (4.24). Let L = {z}⊥ with zx < 0 such that

Kexp∩L = Fβ .We are then under the conditions of item (iii)(b) of Theorem4.13.
We consider the following sequences

vk =
⎡
⎣
1− β + 1/k

1
e1−β+1/k

⎤
⎦ , wk = P{z}⊥vk, uk = PFβ

wk .

For every k we have vk ∈ ∂Kexp \ Fβ , and vk �= wk (because otherwise, we
would have vk ∈ Kexp ∩ {z}⊥ = Fβ ). In addition, we have vk → f̂ and, since
f̂ ∈ Fβ , we have wk → f̂ as well.
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Next, notice that we have 〈̂f, vk〉 ≥ 0 for k sufficiently large and |vk
x/v

k
y − (1−

β)| → 0. Then, following the computations outlined in case (I) of the proof
of Theorem 4.6 and letting ζk :=vk

x/v
k
y , we have from (4.30) and (4.31) that

h2(ζk) �= 0 for all large k (hence, wk �= uk for all large k), and that

Lβ := lim
k→∞

‖wk − vk‖ 1
2

‖wk − uk‖ = lim
k→∞

‖̂p‖
‖̂z‖ 1

2

|h1(ζk)| 12
|h2(ζk)|

= ‖̂p‖
‖̂z‖ 1

2

1√
2(eβ−1 + (β2 + 1)e1−β)

∈ (0,∞),

(4.46)

where the latter equality is from (4.32). On the other hand, from item (iii)(b) of
Theorem 4.13, for B:={wk}, there exists κB > 0 such that for all k ∈ N,

‖wk − uk‖ = d(wk,L ∩ Kexp) ≤ κBd(wk, Kexp)
1
2 ≤ κB‖wk − vk‖ 1

2 .

However, from (4.46), for large enough k, we have ‖wk −uk‖ ≥ 1/(2Lβ)‖wk −
vk‖ 1

2 . Therefore, for large enough k we have

1

2Lβ

‖wk − vk‖ 1
2 ≤ d(wk,L ∩ Kexp) ≤ κBd(wk, Kexp)

1
2 ≤ κB‖wk − vk‖ 1

2 .

Consequently, it holds that for all large enough k,

1

2Lβ

≤ d(wk,L ∩ Kexp)

d(wk, Kexp)
1
2

≤ κB .

Arguing similarly as in case (a), we can also conclude that the choice of | · | 12 in
the error bound is tight.

(c) Let z = (0, 0, 1) and L = {(x, y, 0) | x, y ∈ R} = {z}⊥. Then, from (4.12), we
have L∩ Kexp = F∞. We are then under case (iii)(c) of Theorem 4.13. Because
there is no ẑ ∈ L⊥ with ẑ y > 0, we have a log-type error bound as in (4.45).
We proceed as in item (a) using sequences such that wk = (−1, 1/k, 0), vk =
(−1, 1/k, (1/k)e−k), uk = (−1, 0, 0), for every k. Note that wk ∈ L, vk ∈ Kexp
and PF∞(wk) = uk , for every k. Therefore, there exists κB > 0 such that

1

k
= d(wk,L ∩ Kexp) ≤ κBg∞(d(wk, Kexp)) ≤ κBg∞

(
1

kek

)
, ∀k ∈ N.

In view of the definition of g∞ (see (4.39)), there exists L > 0 such that for large
enough k we have

1

k
= d(wk,L ∩ Kexp) ≤ κBg∞(d(wk, Kexp)) ≤ L

k
.
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Consequently, it holds that for all large enough k,

κB

L
≤ d(wk,L ∩ Kexp)

g∞(d(wk, Kexp))
≤ κB .

Arguing similarly as in case (a), we conclude that the choice of g∞ is tight.

Note that a Lipschitz error bound is always tight up to a constant, because d(x,K ∩
(L+a)) ≥ max{d(x,K), d(x,L+a)}. Therefore, the error bounds in items (ii), (iii)(d)
and in the first half of (iii)(c) are tight.

Sometimes we may need to consider direct products of multiple copies of Kexp in
order to model certain problems, i.e., our problem of interest could have the following
shape:

find x ∈ (L+ a) ∩K,

where K = Kexp × · · · × Kexp is a direct product of m exponential cones.
Fortunately, we already have all the tools required to extend Theorem 4.13 and

compute error bounds for this case too. We recall that the faces of a direct product
of cones are direct products of the faces of the individual cones.11 Therefore, using
Proposition 3.13, we are able to compute all the necessary one-step facial residual
functions for K. Once they are obtained we can invoke Theorem 3.8. Unfortunately,
there is quite a number of different cases one must consider, so we cannot give a
concise statement of an all-encompassing tight error bound result.

We will, however, given an error bound result under the following simplifying
assumption of non-exceptionality or SANE.

Assumption 4.15 (SANE: simplifying assumption of non-exceptionality) Suppose
(Feas) is feasible withK = Kexp×· · ·× Kexp being a direct product of m exponential
cones.We say thatK andL+a satisfy the simplifying assumption of non-exceptionality
(SANE) if there exists a chain of facesF� � · · · � F1 = K as in Proposition 3.2 with
� − 1 = dPPS(K,L+ a) such that for all i , the exceptional face F∞ of Kexp never
appears as one of the blocks of Fi .

Remark 4.16 (SANE is not unreasonable) In many modelling applications of the
exponential cone presented in [37, Chapter 5], translating to our notation, the y vari-
able is fixed to be 1 in (4.1). For example, the hypograph of the logarithm function
“x ≤ ln(z)” can be represented as the constraint “(x, y, z) ∈ Kexp ∩ (L+ a)”, where
L+a = {(x, y, z) | y = 1}. Because the y variable is fixed to be 1, the feasible region
does not intersect the 2D faceF−∞ nor its subfacesF∞ andFne. In particular, SANE
is satisfied. More generally, ifK is a direct product of exponential cones and the affine

11 Here is a sketch of the proof. IfF1 � K1,F2 � K2, then the definition of face implies thatF1×F2 �
K1 × K2. For the converse, let F � K1 × K2 and let F1,F2 be the projection of F onto the first and
second variables, respectively. Suppose that x, y ∈ K1 are such that x+ y ∈ F1. Then, (x+ y, z) ∈ F for
some z ∈ K2. Since (x+y, z) = (x, z/2)+(y, z/2) andF is a face, we conclude that (x, z/2), (y, z/2) ∈ F
and x, y ∈ F1. Therefore F1 � K1 and, similarly, F2 � K2. Then, the equality F = F1 ×F2 is proven
using the definition of face and the fact that (x, z) = (x, 0)+ (0, z).
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space L+ a is such that the y components of each block are fixed positive constants,
then K and L+ a satisfy SANE.

On the other hand, problems involving the relative entropy D(x, y):=x ln(x/y)

are often modelled as “minimize t” subject to “(−t, x, y) ∈ Kexp” and additional
constraints. We could also have sums so that the problem is of the form “minimize∑

ti” subject to “(−ti , xi , yi ) ∈ Kexp” and additional constraints. In those cases, it
seems that it could happen that SANE is not satisfied.

Under SANE, we can state the following result.

Theorem 4.17 (Error bounds for direct products of exponential cones) Suppose (Feas)
is feasible with K = Kexp×· · ·× Kexp being a direct product of m exponential cones.
Then the following hold.

(i) The distance to the PPS condition of {K,L+ a} satisfies dPPS(K,L+ a) ≤ m.
(ii) If SANE is satisfied, then K and L+ a satisfy a uniform Hölderian error bound

with exponent 2−dPPS(Kexp,L+a).

Proof (i): All proper faces of Kexp are polyhedral, therefore �poly(Kexp) = 1. By
item (i) of Proposition 3.2, there exists a chain of length � satisfying item (iii) of
Proposition 3.2 such that �− 1 ≤ m. Therefore, dPPS(K,L+ a) ≤ �− 1 ≤ m.

(ii): If SANE is satisfied, then there exists a chain F� � · · · � F1 = K of length
� ≤ m + 1 as in Proposition 3.2, together with the corresponding z1, . . . , z�−1.
Also, the exceptional face F∞ never appears as one of the blocks of the Fi .

In what follows, for simplicity, we define

d̂(x):=max{d(x,L+ a), d(x,K)}.

Then, we invoke Theorem 3.8, which implies that given a bounded set B, there exists
a constant κB > 0 such that

d (x, (L+ a) ∩K) ≤ κB (̂d(x)+ ϕ(̂d(x), M)), (4.47)

where M = supx∈B ‖x‖ and there are two cases for ϕ. If � = 1, ϕ is the function such
that ϕ(ε, M) = ε. If � ≥ 2, we have ϕ = ψ�−1♦ · · · ♦ψ1, where ψi is a (suitable
positively rescaled shift of a) one-step facial residual function for Fi and zi . In the
former case, the PPS condition is satisfied, we have a Lipschitzian error bound and we
are done.We therefore assume that the latter case occurs with �−1 = dPPS(K,L+ a).

First, we compute the one-step facial residual functions for each Fi . In order to do
that, we recall that each Fi is a direct product F1

i ×· · ·×Fm
i where each F j

i is a face
of Kexp, excluding F∞ by SANE. Therefore, a one-step facial residual function for

F j
i can be obtained from Corollary 4.4, 4.7 or 4.12. In particular, taking the worst12

case in consideration, and taking the maximum of the facial residual functions, there
exists a nonnegative monotone nondecreasing function ρ : R+ → R+ such that the

12 √· is “worse” than g−∞ in that, near zero,
√

t ≥ g−∞(t). The function g∞ need not be considered
because, by SANE, F∞ never appears.
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function ψ given by

ψ(ε, t):=ρ(t)ε + ρ(t)
√

ε

is a one-step facial residual function for each F j
i . In what follows, in order to sim-

plify the notation, we define ĝ(t):=√t . Also, for every j , we use ĝ j to denote the
composition of ĝ with itself j-times, i.e.,

ĝ j = ĝ ◦ · · · ◦ ĝ︸ ︷︷ ︸
j times

; (4.48)

and we set ĝ0 to be the identity map.
Using the above notation and Proposition 3.13, we conclude the existence of a

nonnegative monotone nondecreasing function σ : R+ → R+ such that the function
ψi given by

ψi (ε, t):=σ(t)ε + σ(t)ĝ(ε)

is a one-step facial residual function for Fi and zi . Therefore, for x ∈ B, we have

ψi (ε, ‖x‖) ≤ σ(M)ε + σ(M)ĝ(ε) = ψi (ε, M), (4.49)

where M = supx∈B ‖x‖.
Next we are going to make a series of arguments related to the following informal

principle: over a bounded set only the terms ĝ j with largest j matter. We start by
noting that for any x ∈ B and any 0 ≤ k ≤ j ≤ �,

ĝk (̂d(x)) = d̂(x)2
−k = d̂(x)(2

−k−2− j )̂d(x)2
− j ≤ κ̂ j,k d̂(x)2

− j ≤ κ̂ ĝ j (̂d(x)),

(4.50)

where κ̂ j,k := supx∈B d̂(x)(2
−k−2− j ) < ∞ because x �→ d̂(x)(2

−k−2− j ) is continuous,
and κ̂ := max0≤k≤ j≤� κ̂ j,k .

Now, let ϕ j :=ψ j♦ · · · ♦ψ1, where ♦ is the diamond composition defined in (3.3).
We will show by induction that for every j ≤ �− 1 there exists κ j such that

ϕ j (̂d(x), M) ≤ κ j ĝ j (̂d(x)), ∀x ∈ B. (4.51)

For j = 1, it follows directly from (4.49) and (4.50). Now, suppose that the claim is
valid for some j such that j + 1 ≤ �− 1. By the inductive hypothesis, we have

ϕ j+1(̂d(x), M) = ψ j+1(̂d(x)+ ϕ j (̂d(x), M), M)

≤ ψ j+1(̂d(x)+ κ j ĝ j (̂d(x)), M)

≤ ψ j+1(κ̃ j ĝ j (̂d(x)), M), (4.52)
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where κ̃ j :=2max{κ̂, κ j } and the last inequality follows from (4.50). Then, we plug
ε = κ̃ j ĝ j (̂d(x)) in (4.49) to obtain

ψ j+1(κ̃ j ĝ j (̂d(x)), M) = σ(M)κ̃ j ĝ j (̂d(x))+ σ(M)ĝ(κ̃ j ĝ j (̂d(x)))

= σ(M)κ̃ j ĝ j (̂d(x))+ σ(M)

√
κ̃ j ĝ j+1(̂d(x))

≤ σ(M)(κ̃ j κ̂ +
√

κ̃ j )ĝ j+1(̂d(x)), (4.53)

where the last inequality follows from (4.50). Combining (4.52) and (4.53) concludes
the induction proof. In particular, (4.51) is valid for j = � − 1. Then, taking into
account some positive rescaling and shifting (see (3.2)) and adjusting constants, from
(4.47), (4.51) and (4.50) we deduce that there exists κ > 0 such that

d (x, (L+ a) ∩K) ≤ κ ĝ�−1(̂d(x)), ∀x ∈ B

with ĝ�−1 as in (4.48). To complete the proof, we recall that dPPS(K,L+ a) =
�− 1. ��
Remark 4.18 (Variants of Theorem 4.17) Theorem 4.17 is not tight and admits variants
that are somewhat cumbersome to describe precisely. For example, the g−∞ function
was not taken into account explicitly but simply “relaxed" to t �→ √

t .
Going for greater generality, we can also drop the SANE assumption altogether and

try to be as tight as our analysis permits when dealingwith possibly inSANE instances.
Although there are several possibilities one must consider, the overall strategy is the
same as outlined in the proof of Theorem 4.17: invoke Theorem 3.8, fix a bounded
set B, pick a chain of faces as in Proposition 3.2 and upper bound the diamond
composition of facial residual function as in (4.51). Intuitively, whenever sums of
function compositions appear, only the “higher” compositions matter. However, the
analysis must consider the possibility of g−∞ or g∞ appearing. After this is done, it
is just a matter to plug this upper bound into (4.47).

We conclude this subsection with an application. In [11], among other results,
the authors showed that when a Hölderian error bound holds, it is possible to derive
the convergence rate of several algorithms from the exponent of the error bound.
As a consequence, Theorems 4.13 and 4.17 allow us to apply some of their results
(e.g., [11, Corollary 3.8]) to the conic feasibility problem with exponential cones,
whenever a Hölderian error bound holds. For non-Hölderian error bounds appearing
in Theorem 4.13, different techniques are necessary, such as the ones discussed in [33]
for deriving convergence rates under more general error bounds.

4.4 Miscellaneous odd behavior and connections to other notions

In this final subsection, we collect several instances of pathological behaviour that can
be found inside the facial structure of the exponential cone.
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Example 4.19 (Hölderian bounds and the non-attainment of admissible exponents)
We recall Definition 2.1 and we consider the special case of two closed convex sets
C1, C2 with non-empty intersection. We say that γ ∈ (0, 1] is an admissible exponent
for C1, C2 if C1 and C2 satisfy a uniform Hölderian error bound with exponent γ . It
turns out that the supremum of the set of admissible exponents is not itself admissible.
In particular, if C1 = Kexp and C2 = spanF−∞, then we see from Corollary 4.3 that
C1 ∩ C2 = F−∞ and that C1 and C2 satisfy a uniform Hölderian error bound for
all γ ∈ (0, 1); however, in view of the sequence constructed in Remark 4.14(a), the
exponent cannot be chosen to be γ = 1.

In fact, from Theorem 4.13 and Remark 4.14(a),C1 andC2 satisfy an entropic error
bound which is tight and is, in a sense, better than any Hölderian error bound with
γ ∈ (0, 1) but worse than a Lipschitzian error bound.

Example 4.20 (Non-Hölderian error bound) The facial structure of Kexp can be used
to derive an example of two sets that provably do not have a Hölderian error bound.
Let C1 = Kexp and C2 = {z}⊥, where zx = zy = 0 and zz = 1 so that C1∩C2 = F∞.
Then, for every η > 0 and every α ∈ (0, 1], there is no constant κ > 0 such that

d(x,F∞) ≤ κ max{d(x, Kexp)
α, d(x, {z}⊥)α}, ∀ x ∈ B(η).

This is because if there were such a positive κ , the infimum in Lemma 4.9 would be
positive, which it is not. This shows that C1 and C2 do not have a Hölderian error
bound. However, as seen in Theorem 4.10, C1 and C2 have a log-type error bound. In
particular if q ∈ B(η), using (2.1), (2.2) and Theorem 4.10, we have

d(q,F∞) ≤ d(q, {z}⊥)+ d(P{z}⊥(q),F∞)

≤ d(q, {z}⊥)+max{2, 2γ−1
z,η }g∞(d(P{z}⊥(q), Kexp))

≤ d̂(q)+max{2, 2γ−1
z,η }g∞(2̂d(q)), (4.54)

where d̂(q):=max{d(q, Kexp), d(q, {z}⊥)} and in the last inequalityweused themono-
tonicity of g∞.

LetC1, · · · , Cm be closed convex sets having nonempty intersection and letC :=∩m
i=1

Ci . Following [33], we say that ϕ : R+ × R+ → R+ is a consistent error bound
function (CEBF) for C1, . . . , Cm if the following inequality holds

d(x, C) ≤ ϕ

(
max
1≤i≤m

d(x, Ci ), ‖x‖
)

∀ x ∈ E;

and the following technical conditions are satisfied for every a, b ∈ R+: ϕ(·, b)

is monotone nondecreasing, right-continuous at 0 and ϕ(0, b) = 0; ϕ(a, ·) is
mononotone nondecreasing. CEBFs are a framework for expressing error bounds
and can be used in the convergence analysis of algorithms for convex feasibility
problems, see [33, Sects. 3 and 4]. For example, C1, . . . , Cm satisfy a Hölderian
error bound (Definition 2.1) if and only if these sets admit a CEBF of the format
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ϕ(a, b):=ρ(b)max{a, aγ (b)}, where ρ : R+ → R+ and γ : R+ → (0, 1] are mono-
tone nondecreasing functions [33, Theorem 3.4].

We remark that in Example 4.20, although the sets C1, C2 do not satisfy a Hölde-
rian error bound, the log-type error bound displayed therein is covered under the
framework of consistent error bound functions. This is because g∞ is a contin-
uous monotone nondecreasing function and γ−1

z,η is monotone nondecreasing as a
function of η (Remark 3.11). Therefore, in view of (4.54), the function given by
ϕ(a, b):=a +max{2, 2γ−1

z,b }g∞(2a) is a CEBF for C1 and C2.
By the way, it seems conceivable that many of our results in Sect. 3.1 can be adapted

to derive CEBFs for arbitrary convex sets. Specifically, Lemma 3.9, Theorem 3.10,
and Lemma 3.12 only rely on convexity rather than on the more specific structure of
cones.

Next, we will see that we can also adapt Examples 4.19 and 4.20 to find instances
of odd behavior of the so-called Kurdyka-Łojasiewicz (KL) property [1, 2, 8–10, 30].
First, we recall some notations and definitions. Let f : R

n → R ∪ {+∞} be a proper
closed convex extended-real-valued function. We denote by dom∂ f the set of points
for which the subdifferential ∂ f (x) is non-empty and by [a < f < b] the set of x
such that a < f (x) < b. As in [10, Sect. 2.3], we define for r0 ∈ (0,∞) the set

K(0, r0) := {φ ∈ C[0, r0) ∩ C1(0, r0) | φ is concave, φ(0) = 0, φ′(r) > 0 ∀r ∈ (0, r0)}.

Let B(x, ε) denote the closed ball of radius ε > 0 centered at x. With that, we say
that f satisfies the KL property at x ∈ dom∂ f if there exist r0 ∈ (0,∞), ε > 0 and
φ ∈ K(0, r0) such that for all y ∈ B(x, ε) ∩ [ f (x) < f < f (x)+ r0] we have

φ′( f (y)− f (x))d(0, ∂ f (y)) ≥ 1.

In particular, as in [30], we say that f satisfies theKL property with exponent α ∈ [0, 1)
at x ∈ dom∂ f , if φ can be taken to be φ(t) = ct1−α for some positive constant c.
Next, we need a result which is a corollary of [10, Theorem 5].

Proposition 4.21 Let C1, C2 ⊆ R
n be closed convex sets with C1 ∩ C2 �= ∅. Define

f : R
n → R as

f (y) = d(y, C1)
2 + d(y, C2)

2.

Let x ∈ C1 ∩ C2, γ ∈ (0, 1]. Then, there exist κ > 0 and ε > 0 such that

d(y, C1 ∩ C2) ≤ κ max{d(y, C1), d(y, C2)}γ , ∀y ∈ B(x, ε) (4.55)

if and only if f satisfies the KL property with exponent 1− γ /2 at x.

Proof Note that inf f = 0 and argmin f = C1∩C2. Furthermore, (4.55) is equivalent
to the existence of κ ′ > 0 and ε > 0 such that

d(y, argmin f ) ≤ ϕ( f (y)), ∀y ∈ B(x, ε),
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where ϕ is the function given by ϕ(r) = κ ′rγ /2. With that, the result follows from
[10, Theorem 5]. ��
Example 4.22 (Examples in the KL world) In Example 4.19, we have two sets C1, C2
satisfying a uniform Hölderian error bound for γ ∈ (0, 1) but not for γ = 1. Because
C1 and C2 are cones and the corresponding distance functions are positively homo-
geneous, this implies that for 0 ∈ C1 ∩ C2, a Lipschitzian error bound never holds at
any neighbourhood of 0. That is, given η > 0, there is no κ > 0 such that

d(y, C1 ∩ C2) ≤ κ max{d(y, C1), d(y, C2)}, ∀y ∈ B(η)

holds. Consequently, the function f in Proposition 4.21 satisfies the KL property with
exponent α for any α ∈ (1/2, 1) at the origin, but not for α = 1/2. To the best of our
knowledge, this is the first explicitly constructed function in the literature such that
the infimum of KL exponents at a point is not itself a KL exponent.

Similarly, from Example 4.20 we obtain C1, C2 for which (4.55) does not hold for
0 ∈ C1 ∩ C2 with any chosen κ, ε > 0, γ ∈ (0, 1]. Thus from Proposition 4.21 we
obtain a function f that does not satisfy the KL property with exponent β ∈ [1/2, 1)
at the origin. Since a function satisfying the KL property with exponent α ∈ [0, 1)
at an x ∈ dom∂ f necessarily satisfies it with exponent β for any β ∈ [α, 1) at x, we
see that this f does not satisfy the KL property with any exponent at the origin. On
passing, we would like to point out that there are functions known in the literature that
fail to satisfy the KL property; e.g., [9, Example 1].

5 Concluding remarks

In this work, we presented an extension of the results of [34] and showed how to
obtain error bounds for conic linear systems using one-step facial residual functions
and facial reduction (Theorem 3.8) even when the underlying cone is not amenable.
Related to facial residual functions, we also developed techniques that aid in their
computation; see Sect. 3.1. Finally, all techniques and results developed in Sect. 3
were used in some shape or form in order to obtain error bounds for the exponential
cone in Sect. 4. Our new framework unlocks analysis for cones not reachable with
the techniques developed in [34]; these include cones that are not facially exposed, as
well as cones for which the projection operator has no simple closed form or is only
implicitly specified. These were, until now, significant barriers against error bound
analysis for many cones of interest.

As future work, we are planning to use the techniques developed in this paper
to analyze and obtain error bounds for some of these other cones that have been
previously unapproachable. Potential examples include the cone of n × n completely
positive matrices and its dual, the cone of n × n copositive matrices. The former is
not facially exposed when n ≥ 5 (see [53]) and the latter is not facially exposed when
n ≥ 2. It would be interesting to clarify how far error bound problems for these cones
can be tackled by our framework. Or, more ambitiously, we could try to obtain some
of the facial residual functions and some error bound results. Of course, a significant
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challenge is that their facial structure is not completely understood, but we believe that
even partial results for general n or complete results for specific values of n would be
relevant and, possibly, quite non-trivial. Finally, as suggested by one of the reviewers,
our framework may be enriched by investigating further geometric interpretations of
the key quantity γz,η in (3.15), beyond Fig. 2. For instance, it will be interesting to see
whether the positivity of γz,η is related to some generalization of the angle condition
in [38], which was originally proposed for the study of Lipschitz error bounds.
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