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AMENABLE CONES ARE PARTICULARLY NICE\ast 

BRUNO F. LOUREN\c CO\dagger , VERA ROSHCHINA\ddagger , AND JAMES SAUNDERSON\S 

Abstract. Amenability is a geometric property of convex cones that is stronger than facial
exposedness and assists in the study of error bounds for conic feasibility problems. In this paper we
establish numerous properties of amenable cones and investigate the relationships between amenabil-
ity and other properties of convex cones, such as niceness and projectional exposure. We show that
the amenability of a compact slice of a closed convex cone is equivalent to the amenability of the
cone, and we prove several results on the preservation of amenability under intersections and other
convex operations. It then follows that homogeneous, doubly nonnegative, and other cones that can
be represented as slices of the cone of positive semidefinite matrices are amenable. It is known that
projectionally exposed cones are amenable and that amenable cones are nice; however, the converse
statements have been open questions. We construct an example of a four-dimensional cone that is
nice but not amenable. We also show that amenable cones are projectionally exposed in dimensions
up to and including four. We conclude with a discussion on open problems related to facial structure
of convex sets that we came across in the course of this work but were not able to fully resolve.

Key words. facially exposed cone, nice cone, amenable cone, projectionally exposed cone, facial
structure
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1. Introduction. Amenability was introduced in [19] in the context of error
bounds for convex cones. In particular, consider the following conic feasibility prob-
lem:

(CFP) find x \in \scrK \cap \scrV ,

where \scrK is a closed convex cone and \scrV is an affine subspace. If \scrK is an amenable
cone, there are a number of techniques that simplify the study of error bounds for
the system (CFP), especially when the goal is to obtain bounds that hold without
constraint qualifications; see [19].

Given the ubiquity and the usefulness of error bounds throughout optimization
(see, e.g., [21, 15]), it is natural to try to develop our understanding of amenability.
In this work we extend the notion of amenable cones to arbitrary convex sets. Doing
so allows us to show that the intersection of amenable sets is amenable and that all
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affine slices of an amenable cone must be amenable. Conversely, if a cone is generated
by a compact amenable slice, it must be amenable.

Amenability is a stronger form of facial exposedness, which is a notion that goes
back at least to the 1930s [30]. There are several other ways to strengthen the classical
notion of facial exposure that are commonly used in the literature. The notion of
niceness (facial dual completeness) has its origins in optimality conditions for general
conic convex optimization problems and in the facial reduction algorithm of Borwein
and Wolkowicz [5]; see Remarks 6.1 and 6.2 therein. (The term nice itself seems to
have appeared later.) Pataki has shown that nice cones admit extended duals that
fix certain theoretical issues related to classical Lagrangian duality [25]. Niceness also
features in results on when a linear image of a dual of a convex cone is closed [17, 23]
and in the study of conic lifts of convex sets: when a cone is nice, certain results
related to lifts can be sharpened; see [13, Corollary 1]. Pataki showed in [25] that nice
cones are always facially exposed and conjectured that the converse was true. This
was disproved in [28], where a four-dimensional cone that is facially exposed but not
nice is constructed. Niceness also appears to have a direct relation to error bounds:
necessary and sufficient conditions for niceness were obtained using subtransversality-
like tangential relations in [29]. It was shown in [19] that amenable cones are nice. In
this paper we show that nice cones are not always amenable.

Another notion that we pay close attention to in this paper is projectional ex-
posedness, which goes back to [5], also in connection to optimality conditions for
conic convex optimization problems and the so-called facial reduction algorithm. See
also [2, 26, 32]. It was shown in [19] that projectionally exposed cones are amenable.
In this paper we show that the converse is true in dimensions up to and including four.
In particular, if there exists an amenable cone that is not projectionally exposed, it
must have dimension at least five.

Finally, we show that homogeneous and doubly nonnegative cones are amenable,
in particular generalizing the previously known result for symmetric cones [19]. This
contributes to the evidence that amenability is a valuable notion that captures the
benign properties of many important classes of structured cones.

This paper is organised as follows. Section 2 contains preliminaries on the facial
structure of convex sets and cones: we state and provide references for known technical
results that are used throughout the paper.

In section 3 we discuss basic properties of amenable sets. In section 3.1 we ex-
tend the definition of amenability from cones to general convex sets, discussing the
subtleties related to noncompactness that are absent in the conic setting. (Specifi-
cally, see Example 3.3 based on a geometric construction from [31].) We highlight the
motivation via subtransversality, proving that amenability of a face is equivalent to
subtransversality of the affine span of F and the set C in Proposition 3.2. We also
demonstrate that amenability is preserved under some common convex operations,
such as intersections and direct products (see Proposition 3.4).

Section 4 is dedicated to showing that amenability of a cone is equivalent to
the amenability of its compact base. Studying amenability of slices often makes the
geometry more intuitive and reduces the dimension of the problem.

In section 5 we construct an example of a cone that is amenable but not nice
(facially dual complete).

Section 6 is dedicated to the relationship between amenability and projectional
exposure. We prove that for amenable cones, faces of codimension one are projec-
tionally exposed (see Theorem 6.2), and this allows us to conclude that all amenable
cones in spaces of dimension at most 4 are projectionally exposed (Corollary 6.4).
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In the last section we state open questions related to facial structure of convex
sets and provide additional insights.

2. Preliminaries. Here we recall some facts about convex sets and their faces.
We let \scrE denote some finite dimensional Euclidean space equipped with an inner prod-
uct \langle \cdot , \cdot \rangle and an induced norm \| \cdot \| . Let C \subseteq \scrE be a convex set. We denote its closure,
relative interior, interior, affine hull, dimension, span, and orthogonal complement by
clC, riC, intC, aff C, dimC, spanC, and C\bot , respectively. The recession cone of C is
denoted by recC and its lineality space by linC, so that linC = recC \cap ( - recC). We
denote by coneC the cone generated by C, i.e.,

coneC := \{ \lambda x | x \in C, \lambda \geq 0\} .

Given x \in \scrE , we define the distance from x to C as

(2.1) dist(x,C) := inf\{ \| x - y\| | y \in C\} .

If U \subseteq \scrE is an arbitrary subset, we denote by convU the convex hull of U .
Throughout the paper we adopt the following convention. We will use C,F for

convex sets and their faces, respectively. \scrK ,\scrF will be used for convex cones and their
faces, respectively. We denote by \scrS n the space of n\times n real symmetric matrices and
by \scrS n

+ the cone of n\times n real symmetric positive semidefinite matrices.

2.1. On faces of convex sets. Here, we collect a few results and facts on
faces of convex sets that will be useful in later sections. First we recall that a closed
convex set F contained in C is said to be a face if whenever x, y \in C are such that
\alpha x+(1 - \alpha )y \in F for some \alpha \in (0, 1), we have x, y \in F . In this case, we write F \trianglelefteq C.
Faces consisting of a single point are called extreme points and the set of extreme
points of C will be denoted by extC. A face F \trianglelefteq C is said to be proper if F \not = C.
Given some convex subset S \subseteq C we denote by minFace(S,C) the minimal face of C
containing S. For F \trianglelefteq C, we have the following characterization of the minimal face:

(2.2) F = minFace(S,C) \Leftarrow \Rightarrow ri(S) \cap ri(F ) \not = \emptyset \Leftarrow \Rightarrow ri(S) \subseteq riF,

i.e., the minimal face of C containing S is the unique face such that the relative
interior of S intersects the relative interior of F . For the first implication, see [22,
Proposition 3.2.2]. The second implication follows because ri(S) = ri(S\cap F ) = ri(S)\cap 
ri(F ) \subseteq ri(F ) holds when ri(S) \cap ri(F ) \not = \emptyset and S \subseteq F (see [27, Theorem 6.5]).

A face F \trianglelefteq C is said to be facially exposed if there exists a supporting hyperplane
H of C such that F = C \cap H. The following result on exposed faces is well known,
but we give a short proof; see also [8, Lemma 2.3] for a related result.

Proposition 2.1 (every proper face is contained in some proper exposed face).
Let F \trianglelefteq C be such that F \not = C. Then, there exists an exposed face F \prime \trianglelefteq C satisfying
F \subseteq F \prime and F \prime \not = C.

Proof. Because F \not = C, we must have ri(F ) \cap ri(C) = \emptyset (see, e.g., [27, Corol-
lary 18.1.2]). Then F and C can be properly separated, i.e., there exists a hyperplane
H such that F and C belong to opposite closed half-spaces defined by H and at least
one among F and C is not entirely contained in H (see [27, Theorem 11.3]). Because
F \subseteq C, it must be the case that F \subseteq H and that H is a supporting hyperplane
of C. Since the separation is proper, there exists at least one point of C not in H.
Therefore, the exposed face F \prime := C \cap H satisfies F \prime \not = C and F \subseteq F \prime .
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The next proposition is contained in the results of section IV of [11], but for
self-containment sake, we give a short argument.

Proposition 2.2. Let C1, C2 be closed convex sets such that C := C1 \cap C2 is
nonempty. Let F \trianglelefteq C. Then, there are F1 \trianglelefteq C1, F2 \trianglelefteq C2 such that

F = F1 \cap F2, ri(F ) = ri(F1) \cap ri(F2).

Proof. Let F1 := minFace(F,C1) and F2 := minFace(F,C2). By (2.2), we have

ri(F ) \subseteq ri(F1) \cap ri(F2).

In particular, F1 and F2 have a relative interior point in common, so we have ri(F1)\cap 
ri(F2) = ri(F1 \cap F2); see [27, Theorem 6.5]. Therefore,

(2.3) ri(F ) \subseteq ri(F1 \cap F2) = ri(F1) \cap ri(F2).

Because F1 \trianglelefteq C1 and F2 \trianglelefteq C2, we have that F1 \cap F2 is a face of C. Since F is also a
face of C, (2.3) implies that F = F1 \cap F2.

2.2. Cones and notions of facial exposedness. First, we recall that a closed
convex cone \scrK \subseteq \scrE is said to be pointed if lin\scrK = \{ 0\} and full-dimensional if dim\scrK =
dim \scrE . A face \scrF \trianglelefteq \scrK such that dim\scrF = 1 is called an extreme ray. If \scrF = \{ \alpha x | \alpha \geq 
0\} , we say that \scrF is generated by x.

Here, we recall some properties stronger than facial exposedness for cones. We
say that a cone \scrK is nice (or facially dual complete) if for every face \scrF \trianglelefteq \scrK we have

\scrF \ast = \scrK \ast + \scrF \bot ,

where \scrK \ast is the dual cone of \scrK , consisting of all linear functionals on \scrE that take
nonnegative values on \scrK . Equivalently, we have that \scrK \ast +\scrF \bot is closed for all \scrF \trianglelefteq \scrK .
A face \scrF \trianglelefteq \scrK is said to be projectionally exposed if there exists an idempotent linear
map \scrP : \scrE \rightarrow \scrE (i.e., a linear projection that is not necessarily orthogonal) such that

\scrP (\scrK ) = \scrF .

\scrK is said to be projectionally exposed if every face is projectionally exposed.
Finally, \scrK is said to be amenable if for every face \scrF \trianglelefteq \scrK there exists a constant

\kappa > 0 (possibly depending on \scrF ) such that

(2.4) dist(x,\scrF ) \leq \kappa dist(x,\scrK ) \forall x \in span\scrF .

Gathering several results in the literature, we have the following.

Proposition 2.3 (notions of exposedness). Consider the following statements.
(i) \scrK is projectionally exposed.
(ii) \scrK is amenable.
(iii) \scrK is nice.
(iv) \scrK is facially exposed.
Then (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv). If dim\scrK \leq 3, then (iv) \Rightarrow (i).

Proof. The implication (i) \Rightarrow (ii) \Rightarrow (iii) follows from Propositions 9 and 13 in
[19]. The implication (iii) \Rightarrow (iv) comes from [24, Theorem 3].

Finally, Poole and Laidacker proved that when dim\scrK \leq 3, facial exposedness
implies projectional exposedness [26, Theorem 3.2].
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To conclude this subsection, we comment briefly on some applications of the
notion of amenability. In [19], the author describes how to compute error bounds for
amenable cones. This computation relies on obtaining the so-called facial residual
functions (FRFs) and combining FRFs with the facial reduction algorithm [5]; see
also [16].

Error bounds themselves are important tools for the analysis of optimization
problems [21]. In particular, the behavior of several algorithms can be described by
the kind of error bound that holds between the underlying sets; see, for example, [4].
For a discussion on convergence analysis of algorithms in the context of amenable
cones and connections to the notion of singularity degree, see [18].

Finally, as we show that certain classes of cones are amenable, (non)amenability
then becomes a reasonable criterion for proving that a given cone does not belong
to some target class. Because amenability implies facial exposedness and niceness,
nonamenability is more likely to work as a witness of nonmembership. For example,
we will show in Corollary 3.5 that spectrahedral sets are amenable. In particular, our
example of a nice but not amenable cone described in section 5 is not spectrahedral.
We believe this would be nontrivial to establish using other methods.

2.3. On bounded linear regularity. We say that convex sets C1, . . . , Cm \subseteq \scrE 
satisfy bounded linear regularity if their intersection C :=

\bigcap m
i=1 Ci is nonempty and

the following error bound condition holds: for every bounded set B \subseteq \scrE , there exists
\kappa B > 0 such that

(2.5) dist(x,C) \leq \kappa B max
1\leq i\leq m

dist(x,Ci) \forall x \in B.

Bounded linear regularity coincides with the notion of bounded 1-H\"older regularity;
see, for example, [4, Definition 2.2] and the comments afterwards. In the next sections
we will need the following result; see [3, Corollary 3] for a proof.

Proposition 2.4. Let C1, . . . , Cm \subseteq \scrE be such that C1, . . . , Ck are polyhedral sets
and \Biggl( 

k\bigcap 
i=1

Ci

\Biggr) \bigcap \left(  m\bigcap 
j=k+1

riCj

\right)  \not = \emptyset 

holds. Then, C1, . . . , Cm satisfy bounded linear regularity.

We mention in passing that other sufficient criteria for bounded linear regularity
can be seen in [3] and in [7, Theorem 7].

3. Amenable convex sets and their basic properties. Amenability was
originally defined for cones only, as in (2.4). Our first task is to extend this definition
to arbitrary convex sets. There are two main motivations for that. The first is that
the facial structure of convex sets is also an important subject on its own. The second
is that when analyzing the properties of a convex cone, it can be more convenient to
analyze its slices first, because they are lower dimensional objects. In fact, in section 4
we will show that the amenability of a pointed closed convex cone is equivalent to the
amenability of its slices; see Proposition 4.1 and Theorem 4.5.

3.1. Definition of amenability for general convex sets. Let C be an arbi-
trary convex set, and let F \trianglelefteq C be a face. With that, we have

F = C \cap aff F.
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A first attempt at extending amenability (2.4) to general closed convex sets would be
to require the existence of some \kappa > 0 such that

(3.1) dist(x, F ) \leq \kappa dist(x,C) \forall x \in aff F.

Unfortunately, this is unlikely to hold for many reasonable sets, as we will see in
Example 3.3. The key is to restrict the validity of (3.1) to bounded sets as follows.

Definition 3.1 (amenable faces and amenable sets). Let C be a closed convex
set and F \trianglelefteq C be a face. F is said to be amenable if for every bounded set B, there
exists a constant \kappa > 0 (possibly depending on F and B) such that

(3.2) dist(x, F ) \leq \kappa dist(x,C) \forall x \in (aff F ) \cap B.

If all faces of C are amenable, then C is said to be an amenable convex set.

Next, we advance the case that Definition 3.1 is reasonable by presenting a few
equivalences. Recall that C1 and C2 are subtransversal at x\ast \in C1 \cap C2 [14, Defini-
tion 7.5] if there is a neighborhood U of x\ast and \kappa > 0 such that

(3.3) dist(x,C1 \cap C2) \leq \kappa (dist(x,C1) + dist(x,C2)) \forall x \in U.

Proposition 3.2. Let C be a convex set, and let F \trianglelefteq C be a face. The following
are equivalent:
(i) F is an amenable face of C.
(ii) C and aff F are boundedly linearly regular; i.e., for every bounded set B there

exists \kappa B > 0 such that

(3.4) dist(x, F ) \leq \kappa B max\{ dist(x, aff F ),dist(x,C)\} \forall x \in B.

(iii) C and aff F are subtransversal at every point of F .

Proof. First, we observe that (3.2) is implied by (3.4) when C1 = C, C2 = aff F ,

and x \in aff F . Therefore, (i) \Leftarrow (ii) holds.

We move on to proving that (i) \Rightarrow (ii) . Suppose F is amenable, let B be an

arbitrary bounded set, and let P denote the projection operator onto aff F , i.e.,
P (x) = argminy\in aff F \| x - y\| holds for every x. Since P is nonexpansive, P (B) must
be bounded as well. By the definition of amenability, there exists \kappa such that

(3.5) dist(z, F ) \leq \kappa dist(z, C) \forall z \in (aff F ) \cap P (B).

Given x \in B, using (3.5) and the properties of the projection operator, we have

dist(x, F ) \leq dist(x, aff F ) + dist(P (x), F )

\leq dist(x, aff F ) + \kappa dist(P (x), C)

\leq dist(x, aff F ) + \kappa (dist(x,C) + dist(x, aff F ))

\leq (\kappa + 1)(dist(x,C) + dist(x, aff F ))

\leq 2(\kappa + 1)max\{ dist(x,C),dist(x, aff F )\} .

This shows that C and aff F are boundedly linearly regular.

Next, we check that (ii) \Rightarrow (iii) . Let x\ast \in F , and let U be any bounded neigh-

borhood of x\ast . Since (ii) holds, there exists \kappa > 0 such that

dist(x, F ) \leq \kappa (dist(x,C) + dist(x, aff F )) \forall x \in U,
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which shows that C and aff F are subtransversal at x\ast .
Finally, we show that (ii) \Leftarrow (iii) . Suppose that aff F and C are subtransversal

at every x \in F . Let B be a bounded set, and denote by \=B its closure. For every
x \in \=B, there exist some open neighborhood Ux and a constant \kappa x such that (3.3)
holds. Since \=B is compact, and the Ux form an open cover for \=B, there are finitely
many x1, . . . , x\ell such that

\=B \subseteq 
\ell \bigcup 

i=1

Uxi
.

Therefore, if we set
\kappa = max\{ \kappa x1

, . . . , \kappa x\ell 
\} ,

then, for every x \in B, we have

dist(x, F ) \leq \kappa (dist(x, aff F ) + dist(x,C)) \leq 2\kappa max\{ dist(x, aff F ),dist(x,C)\} .

Let \scrK be a closed convex cone. In [19, Proposition 12] it was shown that a face
\scrF \trianglelefteq \scrK satisfies (2.4) if and only if \scrK and span\scrF are boundedly linearly regular. Since
span\scrF = aff \scrF , in view of Proposition 3.2, we conclude that \scrK is amenable as a cone
(i.e., (2.4) is satisfied for every face) if and only if \scrK is amenable as a convex set (i.e.,
Definition 3.1 is satisfied).

Enforcing boundedness allows us to prove closure of amenable sets under several
common operations, such as intersections, direct products, linear transformations,
and lifts (see Proposition 3.4 and Theorem 4.5). The following example shows that
boundedness is essential in Definition 3.1 when dealing with general convex sets.

Example 3.3 (boundedness is essential in the definition of amenability). In the
definition of amenability, we require that (3.2) hold only when a bounded set B is
specified and \kappa is allowed to change with B. Here, we show an example, based on
Example 1 in [31], of an amenable convex set for which (3.2) does not hold globally.
Let

(3.6) C :=

\biggl\{ \biggl( 
x11 x12

x12 x22

\biggr) 
\in \scrS 2

+ | x22 \geq 1

\biggr\} 
.

The set C is the intersection of an ice-cream cone and a half-space, shown in Figure
1.

Fig. 1. A subset of the 2 \times 2 positive semidefinite cone described by (3.6) which shows that
amenability must be considered locally, in general.
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Second-order cones and half-spaces are amenable [19], and it will be shown in
Proposition 3.4 that intersections of amenable sets are amenable, so C is amenable.

Next we consider the following face of C:

F :=

\biggl\{ \biggl( 
x11 x12

x12 1

\biggr) 
\in \scrS 2

+

\biggr\} 
.

F is indeed a face of C because it is obtained as an intersection of C with the sup-
porting hyperplane

H :=

\biggl\{ \biggl( 
x11 x12

x12 x22

\biggr) 
\in \scrS 2 | x22 = 1

\biggr\} 
= \{ x \in \scrS 2 | \langle x, d\rangle = 1\} ,

where d \in \scrS 2
+ is the matrix such that d22 = 1 and is zero elsewhere. We note that

the affine hull of F is H.
Next, we look at whether there could possibly exist some constant \kappa > 0 such

that

(3.7) dist(x, F ) \leq \kappa dist(x,C) \forall x \in aff F,

i.e., whether amenability could hold globally. For concreteness, we use the distance
on \scrS 2 induced by the Frobenius norm. So suppose that (3.7) holds. Similar to the
sequence of inequalities in the proof that (i) \Rightarrow (ii) in Proposition 3.2, we have

dist(x, F ) \leq (\kappa + 1)(dist(x,C) + dist(x, aff F )) \forall x \in \scrS 2.(3.8)

Next, we consider the following family of points indexed by \epsilon > 0:

x\epsilon :=

\biggl( 
1/(\epsilon 2 + \epsilon 3) 1/\epsilon 

1/\epsilon 1 + \epsilon 

\biggr) 
.

We observe that x\epsilon \in C, so dist(x\epsilon , C) = 0. Furthermore, dist(x\epsilon , aff F ) \leq \epsilon . Fol-
lowing essentially the same line of argument presented in Example 1 of [31], we will
derive a contradiction as follows. Let z\epsilon = argminz\in F \| x\epsilon  - z\| , and let y\epsilon := z\epsilon  - x\epsilon .
With that, we have x\epsilon + y\epsilon \in F and

\| y\epsilon \| = dist(x\epsilon , F ).

Using (3.8), we also have

(3.9) \| y\epsilon \| = dist(x\epsilon , F ) \leq (\kappa + 1)\epsilon .

Since y\epsilon 22 + x\epsilon 
22 = 1, we have y\epsilon 22 =  - \epsilon . Since x\epsilon + y\epsilon must be positive semidefinite,

its determinant must be nonnegative, so the following inequality must hold:

y\epsilon 11(\epsilon 
2 + \epsilon 3) + 1

\epsilon 2 + \epsilon 3
 - (1 + \epsilon y\epsilon 12)

2

\epsilon 2
\geq 0.

Therefore,

y\epsilon 11 \geq  - 1

\epsilon 2 + \epsilon 3
+

1

\epsilon 2
+

2y\epsilon 12
\epsilon 

+ (y\epsilon 12)
2

=
1

\epsilon (1 + \epsilon )
+

2y\epsilon 12
\epsilon 

+ (y\epsilon 12)
2.
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By (3.9), | y\epsilon 12| is bounded above by (\kappa + 1)\epsilon . We then have

y\epsilon 11 \geq 1

\epsilon (1 + \epsilon )
 - 2(\kappa + 1).

As \epsilon goes to 0, y\epsilon 11 goes to +\infty , which contradicts (3.9). We conclude that (3.7)
cannot possibly hold. Therefore, although C is amenable, the amenability of its faces
must be considered locally.

3.2. Basic properties of amenable convex sets. In this subsection we prove
some basic properties of amenable convex sets.

Proposition 3.4 (properties of convex amenable sets). Let C1, C2 \subseteq \scrE be convex
sets and \^\scrE a finite dimensional Euclidean space.
(i) If C1 and C2 are amenable, then C1 \cap C2 is amenable.
(ii) If C1 and C2 are amenable, then C1 \times C2 is amenable.
(iii) If A : \scrE \rightarrow \^\scrE is an injective affine map, then A(C1) is amenable if and only if

C1 is amenable.
(iv) If C1 is polyhedral, then it is amenable.
(v) C1 is amenable if and only if C1 \cap (linC1)

\bot is amenable.

Proof. (i) Let F be a face of C1 \cap C2, and let C := C1 \cap C2. By Proposition 2.2,

there are faces F1 \trianglelefteq C1, F2 \trianglelefteq C2 such that

F = F1 \cap F2, ri(F ) = ri(F1) \cap ri(F2).

In particular, this implies that

(3.10) ri(F1) \cap ri(F2) \not = \emptyset .

Now, we are ready to show that F is an amenable face of C. Let B be an arbitrary
bounded set. By (3.10) and Proposition 2.4, there exists \^\kappa such that

dist(x, F ) \leq \^\kappa (dist(x, F1) + dist(x, F2)) \forall x \in B.

Since F1 and F2 are amenable faces of C1 and C2, respectively, there are constants
\kappa 1, \kappa 2 satisfying (3.4). Therefore, for every x \in B we have

dist(x, F ) \leq \^\kappa (\kappa 1 dist(x,C1) + \kappa 1 dist(x, aff F1) + \kappa 2 dist(x,C2) + \kappa 2 dist(x, aff F2)).

Since C \subseteq C1 \cap C2 and aff F \subseteq (aff F1) \cap (aff F2), we have for i \in \{ 1, 2\} 

dist(x,Ci) \leq dist(x,C), dist(x, aff Fi) \leq dist(x, aff F ) \forall x \in B.

Letting \kappa := 2\^\kappa max\{ \kappa 1, \kappa 2\} , we conclude that

dist(x, F ) \leq \kappa (dist(x,C) + dist(x, aff F )) \forall x \in B.

By Proposition 3.2, this implies that F is an amenable face of C.

(ii) We assume \scrE \times \scrE is equipped with a norm such that

\| (x, y)\| = \| x\| + \| y\| \forall (x, y) \in \scrE .

Let \scrF \trianglelefteq C1 \times C2; then there are F1 \trianglelefteq C1 and F2 \trianglelefteq C2 such that F = F1 \times F2.
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Let B be a bounded set in \scrE \times \scrE . We denote by B1 and B2 the projection of B on
the first and second coordinate variables, respectively. Since B1, B2 are bounded and
F1, F2 are amenable faces, there are positive constants \kappa 1, \kappa 2 satisfying the definition
of amenability (3.2). With that, let (x, y) \in aff F = (aff F1) \times (aff F2) be such that
(x, y) \in B. We have

dist((x, y), F ) = dist(x, F1) + dist(y, F2)

\leq max\{ \kappa 1, \kappa 2\} (dist(x,C1) + dist(y, C2))

= max\{ \kappa 1, \kappa 2\} (dist((x, y), C1 \times C2)),

which completes the proof of item (ii). As a remark, we note that because of the
equivalence of norms on finite-dimensional spaces, it does not matter which norm we
use in \scrE \times \scrE , except that the constants might change.

(iii) Since \scrA is an injective affine map, there exists some injective linear map \scrB 
and y0 \in \^\scrE such that

\scrA (x) = y0 + \scrB (x) \forall x \in \scrE .
If \scrB is the zero operator, we are done because a set with a single point is always
amenable. So, first suppose that C1 is amenable. We note that F \trianglelefteq C1 if and only if
\scrA (F ) \trianglelefteq \scrA (C1). Furthermore, we have aff \scrA (F ) = \scrA (aff F ).

Let B \subseteq \^\scrE be a bounded set and \scrA (F ) be a face of \scrA (C1). Because \scrA is injective,
\scrA  - 1(B) is bounded in \scrE , so there exists \kappa > 0 such that

(3.11) dist(x, F ) \leq \kappa dist(x,C1) \forall x \in (aff F ) \cap \scrA  - 1(B).

Let \sigma max and \sigma min denote the maximum and minimum singular values of \scrB , so
that

\sigma max = max\{ \| \scrB (x)\| | \| x\| = 1\} , \sigma min = min\{ \| \scrB (x)\| | \| x\| = 1\} ,

where we also use \| \cdot \| to denote the norm in \^\scrE . Because \scrB is injective and is not the
zero operator, we have \sigma min > 0.

Let \scrA (x) \in B \cap (\scrA (aff F )); we have

dist(\scrA (x),\scrA (F )) = dist(\scrB (x),\scrB (F ))

\leq \sigma max dist(x, F )

\leq \sigma max\kappa dist(x,C1)

\leq \sigma max

\sigma min
\kappa dist(\scrB (x),\scrB (C1))

=
\sigma max

\sigma min
\kappa dist(\scrA (x),\scrA (C1)),

where the second inequality follows from (3.11). This shows that \scrA (C1) is amenable.
The converse is analogous, so it is omitted.

(iv) First, we note that a closed half-space H+ must be amenable. It only has

two faces, H+ itself and the underlying hyperplane, which we denote by H. Since H
is an affine set, we have affH = H, and the amenability condition (3.2) is satisfied.

Since any polyhedral set can be expressed as an intersection of finitely many
closed half-spaces, it must be amenable by item (i).

(v) Suppose that C1 is amenable. Since linC\bot 
1 is a subspace, by item (iv), linC\bot 

1

is amenable. Then, C1 \cap (linC1)
\bot is amenable by item (i). Conversely, suppose that
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C1 \cap (linC1)
\bot is amenable. Then, (C1 \cap (linC\bot 

1 )) \times linC1 is amenable by items (ii)
and (iv). Since C1 is isomorphic to to (C1 \cap (linC1)

\bot ) \times linC1, C1 is amenable by
item (iii).

In what follows, we recall that the doubly nonnegative cone \scrD n is the cone of
n \times n real symmetric matrices which are positive semidefinite and have nonnegative
entries. Next, a spectrahedral set C is defined to be the intersection of an affine space
\scrV \subseteq \scrS n with \scrS n

+ or anything linearly isomorphic to \scrV \cap \scrS n
+. We also recall that a

closed convex cone \scrK is said to be homogeneous if its group of automorphisms acts
transitively in the interior of \scrK .

Corollary 3.5. The following convex sets are amenable:
(i) The doubly nonnegative cone \scrD n.
(ii) Spectrahedral sets.
(iii) Homogeneous cones.

Proof. (i) The doubly nonnegative cone \scrD n is the intersection of \scrS n
+ and the

cone of symmetric nonnegative matrices, which are both amenable. Therefore, \scrD n is
amenable by item (i) of Proposition 3.4.

(ii) Let \scrV be an affine space. Because the cone of symmetric positive semidefinite

matrices \scrS n
+ is amenable [19, Proposition 33], an intersection of the format \scrV \cap \scrS n

+ or
anything linearly isomorphic to \scrV \cap \scrS n

+ must be amenable by items (i), (iii), and (iv)
of Proposition 3.4.

(iii) Chua [9] (see also Proposition 1 and section 4 of the paper by Faybusovich

[12]) showed that homogeneous cones are ``slices"" of the positive semidefinite cone.
The precise statement is that if \scrK is a homogeneous cone in \BbbR m, there exist n \geq m
and an injective linear map M such that

M(ri\scrK ) = (ri\scrS n
+) \cap M(\BbbR m);

see [9, Corollary 4.3]. In particular, we have M(\scrK ) = \scrS n
+ \cap M(\BbbR m), which shows that

\scrK is a spectrahedral set and must be amenable by item (ii).

Remark 3.6. The arguments in Corollary 3.5 can be used to show that the feasible
region S of a conic linear program where the underlying cone is amenable must also
be amenable. This follows from item (i) of Proposition 3.4 when S is expressed as
the intersection of an affine space and an amenable cone. Next, suppose that S is
written as \{ y | c  - \scrA y \in \scrK \} , where c is a vector and \scrA is an injective linear map of
appropriate dimensions. With that, we have S = \scrA  - 1((c - \scrK )\cap range\scrA ) so that S is
amenable if \scrK is amenable, by items (i) and (iii) of Proposition 3.4.

Corollary 3.5 solves a few of the questions that were outlined in the conclusion
of [19], in particular whether homogeneous cones are amenable or not. In addi-
tion, although error bounds for the doubly nonnegative cone were shown in [19], the
amenability of \scrD n was left open.

We note that the amenability of \scrD n has the following curious consequences. First,
it shows that the completely positive cone \scrC \scrP n is amenable for n \leq 4, since \scrC \scrP n = \scrD n

for n \leq 4. However, \scrC \scrP n is not amenable for n \geq 5 because it is not facially exposed;
see [36]. Nevertheless, the fact that \scrC \scrP 4 is amenable gives an explicit example of a
cone that is amenable but whose dual cone is not: the dual of \scrC \scrP 4 is the cone of 4\times 4
symmetric copositive matrices, which is known to not be facially exposed.

Next, we will discuss some inheritance properties of amenability. In what follows
we say that a face F \trianglelefteq C is maximal if F \not = C and there is no face \^F \trianglelefteq C satisfying
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\^F \not = F , \^F \not = C, and F \trianglelefteq \^F \trianglelefteq C.

Proposition 3.7 (inheritance and transitivity of amenability). Let C be a closed
convex set. The following items hold:
(i) (Transitivity) Let \^F and F be faces satisfying \^F \trianglelefteq F \trianglelefteq C, where F is an

amenable face of C. Then, \^F is an amenable face of F if and only if it is an
amenable face of C.

(ii) (Inheritance) If C is amenable, then every face F \trianglelefteq C is an amenable convex
set by itself.

(iii) C is amenable if and only if every maximal face F \trianglelefteq C is both an amenable face
of C and an amenable convex set by itself.

Proof. (i) Suppose that \^F is an amenable face of C, and let B be a bounded set.

Since F \subseteq C, we have dist(x,C) \leq dist(x, F ) for every x \in B. In view of Definition 3.1
and (3.2), \^F must be an amenable face of F as well. Conversely, suppose that \^F is an
amenable face of F . By assumption, F is an amenable face of C, so by Proposition 3.2,
there exists \kappa B > 0 such that

(3.12) dist(x, F ) \leq \kappa B max\{ dist(x, aff F ),dist(x,C)\} \forall x \in B.

Similarly, since \^F is an amenable face of F , there exists \^\kappa B > 0 such that

(3.13) dist(x, \^F ) \leq \^\kappa B max\{ dist(x, aff \^F ),dist(x, F )\} \forall x \in B.

Combining (3.12) and (3.13) and using the fact that dist(x, aff F ) \leq dist(x, aff \^F ), we
conclude that \^F is an amenable face of C.

(ii) Every face F \trianglelefteq C satisfies F := C \cap aff F. Therefore, if C is an amenable

cone, by item (i) of Proposition 3.4, F must be an amenable convex set by itself.

(iii) If C is amenable, by item (ii), all the maximal faces must be amenable

convex sets as well. Conversely, suppose that C is such that every maximal face is
an amenable face and an amenable convex set by itself. Let \^F \trianglelefteq C be an arbitrary
face. Because every proper face is contained in a maximal face, \^F must be a face of
some maximal face F . By assumption, F is both an amenable face of C and a convex
amenable set by itself, so \^F must be an amenable face of C by item (i).

Remark 3.8 (set operations and notions of exposedness). Propositions 3.4 and
Proposition 3.7 show that amenability is preserved by quite a few set operations. We
compare briefly how other notions of exposedness fare in this regard. See Table 1 for
a summary.

\bullet Facial exposedness of convex sets is also preserved by finite intersections,
direct products, and injective linear images. Also, polyhedral sets must be
facially exposed, which is a consequence of item (iv) of Proposition 3.4 and
Proposition 2.3 (see also [33, Corollary 2]). It is well known, however, that
facial exposedness does not satisfy transitivity. That is, it can be the case
that \^F is a facially exposed face of F , F is a facially exposed face of C, but \^F
is not a facially exposed face of C. Homogeneous cones are facially exposed
[35].

\bullet Niceness is only defined for cones but is also preserved by finite intersections
(see [24, Proposition 5]), direct products, and injective linear images. Fur-
thermore, niceness is transitive and inherited by the faces of nice cones. The
former follows directly from the definition of niceness. The latter follows from
the fact that a face \scrF \trianglelefteq \scrK satisfies \scrF = \scrK \cap span\scrF and the intersection of
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nice cones is nice. Homogeneous cones are nice; see [10, Proposition 4] and
[9]. This also follows from Corollary 3.5 and Proposition 2.3.

\bullet Projectional exposedness is also only defined for cones, and it is preserved by
direct products and injective linear images. Polyhedral cones must be projec-
tionally exposed; see [2] and [32, Corollary 3.4]. Symmetric cones are known
to satisfy a stronger form of projectional exposedness where the projections
can be chosen to be orthogonal (see [19, Proposition 33]), but it is unknown
whether homogeneous cones are projectionally exposed in general. Notably,
it is not known whether projectional exposedness is preserved by intersec-
tions. Nevertheless, projectional exposedness is transitive and is inherited by
the faces of projectionally exposed cones, as shown in Lemmas 2.2 and 2.3 of
[32].

Table 1
Relations between different notions.

Facially
exposed

Nice Amenable Projectionally
exposed

Defined for convex sets \ding{51} \ding{55} \ding{51} \ding{55}

Preserved
under

finite
intersections

\ding{51} \ding{51} \ding{51} ?

direct
product

\ding{51} \ding{51} \ding{51} \ding{51}

injective
linear image

\ding{51} \ding{51} \ding{51} \ding{51}

Face transitive \ding{55} \ding{51} \ding{51} \ding{51}

Symmetric cones \ding{51} \ding{51} \ding{51} \ding{51}

Homogeneous cones \ding{51} \ding{51} \ding{51} ?

4. Slices of amenable cones. Let \scrK be a pointed closed convex cone. Then,
it can be shown that \scrK is generated by a compact ``slice"" as follows. Let e \in ri\scrK \ast ,
and define

C := \{ x \in \scrK | \langle x, e\rangle = 1\} .

With that, C is compact and \scrK is the cone generated by C. Naturally, many properties
of C are transferred to \scrK and vice versa.

In this subsection, we take a look at how amenability is transferred from C to \scrK .
We start with the following observation.

Proposition 4.1 (polyhedral cuts preserve amenability). Let \scrK be an amenable
closed convex cone, and let P be a polyhedral set. Then \scrK \cap P is an amenable convex
set. In particular, if \scrK is pointed, then \scrK is generated by a compact amenable slice.

Proof. Since P is polyhedral, \scrK \cap P is amenable by items (i) and (iv) of Propo-
sition 3.4.

For the second part, let e \in ri\scrK \ast , and define C := \{ x \in \scrK | \langle x, e\rangle = 1. As
remarked previously, C is compact and is the intersection of \scrK and the hyperplane
\{ x \in \scrE | \langle x, e\rangle = 1\} . Therefore, C is amenable and \scrK = coneC.

Next, we take a look at the converse of Proposition 4.1 and check whether the
cone generated by an amenable compact convex set is amenable. This is a harder
question and requires some careful analysis. Before we state and prove the result in
Theorem 4.5, we need a few preparatory results.
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Proposition 4.2. Let \scrK = coneC, where C \subseteq \scrE is a compact convex set con-
tained in the hyperplane

H = \{ x \in \scrE | \langle e, x\rangle = 1\} ,

where e \in \scrE is nonzero. Then for every x \in H \setminus ( - \scrK \ast )

dist(x,C) \leq \| e\| r dist(x,\scrK ),

where r = maxu\in C \| u\| .
Proof. Let u \in C, and let v be such that \langle v, e\rangle = 0 and \| v\| \not = 0. Then

(4.1)

\bigm| \bigm| \bigm| \bigm| \biggl\langle u

\| u\| 
,

v

\| v\| 

\biggr\rangle \bigm| \bigm| \bigm| \bigm| = 1

\| u\| 

\bigm| \bigm| \bigm| \bigm| \biggl\langle u - 1

\| e\| 2
e,

v

\| v\| 

\biggr\rangle \bigm| \bigm| \bigm| \bigm| \leq \| u - 1
\| e\| 2 e\| 

\| u\| 
.

Observe that

(4.2)
\| u - 1

\| e\| 2 e\| 2

\| u\| 2
=

\| u\| 2  - 1
\| e\| 2

\| u\| 2
= 1 - 1

\| u\| 2\| e\| 2
\leq 1 - 1

r2\| e\| 2
.

Hence from (4.1) and (4.2) we have for any u \in C and any v such that \langle v, e\rangle = 0 that

(4.3) | \langle u, v\rangle | \leq \| v\| \| u\| 

\sqrt{} 
1 - 1

\| e\| 2r2
.

Since for every w \in \scrK we have w = \lambda u, where u \in C and \lambda \geq 0, from (4.3) we obtain

(4.4) | \langle w, v\rangle | \leq \| v\| \| w\| 

\sqrt{} 
1 - 1

\| e\| 2r2
\forall w \in \scrK , \forall v s.t. \langle v, e\rangle = 0.

Now let x \in H \setminus ( - \scrK \ast ), and let y be the projection of x onto \scrK . Since y \in \scrK =
coneC, there is z \in C and \lambda \geq 0 such that y = \lambda z. Moreover, since x /\in  - \scrK \ast , we know
that y \not = 0; hence \lambda \not = 0. Since \scrK is a cone, we deduce that \langle x - y, y\rangle = \langle x - y, z\rangle = 0,
and hence

(4.5) \| x - z\| 2 = \| x - y\| 2 + 2\langle x - y, y  - z\rangle + \| y  - z\| 2 = \| x - y\| 2 + \| y  - z\| 2.

Furthermore,
(4.6)
\| y - z\| 2 = \langle y - z, y - z\rangle = \langle y - z, y - x\rangle +\langle y - z, x - z\rangle = \langle y - z, x - z\rangle = | \langle y - z, x - z\rangle | .

Since x, z \in H, we have \langle x - z, e\rangle = 0, and also either y - z is in \scrK (if \lambda \geq 1) or z - y
is in \scrK (if \lambda \leq 1). Hence from (4.4) and (4.6)

\| y  - z\| 2 = | \langle y  - z, x - z\rangle | \leq \| y  - z\| \| x - z\| 

\sqrt{} 
1 - 1

\| e\| 2r2
.

In the case when \lambda \not = 1 (and hence \| y - z\| \not = 0) we can cancel \| y - z\| . Taking squares
on both sides and using (4.5), we have

\| x - z\| 2 \leq \| x - y\| 2 + \| x - z\| 2
\biggl( 
1 - 1

\| e\| 2r2

\biggr) 
;
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hence
dist(x,C)2 \leq \| x - z\| 2 \leq \| e\| 2r2\| x - y\| 2 = \| e\| 2r2 dist(x,\scrK )2.

When \lambda = 1, we have y = z, and hence

dist(x,C) \leq \| x - z\| = \| x - y\| = dist(x,\scrK ) \leq \| e\| r dist(x,\scrK ),

where the last inequality follows from observing that \| e\| \geq \langle u,e\rangle 
\| u\| = 1

\| u\| \geq 1
r .

Our next result is a geometrically intuitive claim on the existence of a universal
upper bound on the angle between a closed convex cone and any vector in the linear
span of this cone, given that this cone is not one-dimensional (see Figure 2).

Fig. 2. The intuition behind Proposition 4.3: The angle between a ``thick"" cone and any vector
in its linear span is (uniformly) strictly less than \pi .

Proposition 4.3. Suppose that \scrK \subseteq \scrE is a closed convex cone. If dim\scrK > 1,
then

\alpha := inf
x\in span\scrK ,
\| x\| =1

sup
y\in \scrK ,
\| y\| =1

\langle x, y\rangle >  - 1.

Proof. Suppose that the statement is not true. Then there exist a cone \scrK such
that dim\scrK > 1 and a sequence \{ xn\} such that xn \in span\scrK , \| xn\| = 1 for all n, and

lim
n\rightarrow \infty 

sup
y\in \scrK ,\| y\| =1

\langle xn, y\rangle =  - 1.

Since \scrK is closed, for every xn there is yn \in \scrK , \| yn\| = 1 such that

sup
y\in \scrK ,\| y\| =1

\langle xn, y\rangle = \langle yn, xn\rangle .

Moreover, by compactness we can assume that xn \rightarrow \=x \in span\scrK , yn \rightarrow \=y \in \scrK ,
\| \=x\| = 1, \| \=y\| = 1, and \langle \=x, \=y\rangle =  - 1; equivalently \=y =  - \=x \in \scrK . Since dim\scrK > 1, there
exists z \in \scrK , \| z\| = 1, such that z is linearly independent with \=x, \=y. We then have
\langle \=x, z\rangle >  - 1, and since z \in \scrK , \| z\| = 1,

 - 1 = lim
n\rightarrow \infty 

sup
y\in \scrK ,\| y\| =1

\langle xn, y\rangle \geq lim
n\rightarrow \infty 

\langle xn, z\rangle = \langle \=x, z\rangle ;

hence \langle \=x, z\rangle \leq  - 1, a contradiction.

Proposition 4.4. Let \scrK \subseteq \scrE be a closed convex pointed cone. Then for any face
\scrF \trianglelefteq \scrK with dim\scrF > 1 there exists \beta > 0 such that for any x \in span\scrF and any

(4.7) y \in arg max
u\in \scrF ,
\| u\| =1

\langle x, u\rangle 

we have

(4.8) dist(x+ ty,\scrK ) \leq dist(x,\scrK ), dist(x,\scrF ) \leq \beta dist(x+ ty,\scrF ) \forall t \geq 0.
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Proof. Assume that \scrF \trianglelefteq \scrK is a face such that dim\scrF > 1. From Proposition 4.3
we know that there exists a constant \alpha >  - 1 such that

(4.9) sup
u\in \scrF ,\| u\| =1

\langle x, u\rangle \geq \alpha \forall x \in span\scrF , \| x\| = 1.

We recall that for every cone \scrF we have ri\scrF \cap ri\scrF \ast \not = \emptyset .1 Therefore, there exists at
least one nonzero element of span\scrF that belongs to  - \scrF \ast . In view of (4.9), it must
be the case that \alpha \in ( - 1, 0]. With that in mind, we let \beta := 1\surd 

1 - \alpha 2
\in [1,+\infty ).

Let x \in span\scrF , and suppose that y satisfies (4.7). Let z be the projection of x
onto \scrK . Observe that since \scrK is a cone, z \in \scrK , and ty \in \scrF \subseteq \scrK , we have z + ty \in \scrK ,
and hence we have the first inequality of (4.8):

dist(x+ ty,\scrK ) \leq \| (x+ ty) - (z + ty)\| = \| x - z\| = dist(x,\scrK ).

To show the second inequality, first consider the case when x /\in  - \scrF \ast . Then the
projection z of x onto \scrF is not zero; moreover, the arg max function (4.7) is single-
valued at x, and this unique value is y = z/\| z\| . Indeed, by the properties of the
Moreau decomposition, we have

(4.10) \langle x - z, z\rangle = 0 and x - z \in  - \scrF \ast .

For u \in \scrF such that \| u\| = 1 this yields \langle x, u\rangle \leq \langle z, u\rangle \leq \| z\| \| u\| = \| z\| . We conclude
that

\langle x, u\rangle \leq \| z\| =
\langle z, z\rangle 
\| z\| 

=
\langle x, z\rangle 
\| z\| 

\forall u \in \scrF , \| u\| = 1;

hence, y = z/\| z\| satisfies (4.7). To show that such a y is unique, assume that we have
another y\prime \in \scrF , \| y\prime \| = 1 such that \langle x, y\rangle = \langle x, y\prime \rangle . Since \scrF is pointed, the vectors y
and y\prime are noncollinear; moreover, y + y\prime \in \scrF . Hence, we have\biggl\langle 

x,
y + y\prime 

\| y + y\prime \| 

\biggr\rangle 
>

\langle x, y\rangle + \langle x, y\prime \rangle 
\| y\| + \| y\prime \| 

= \langle x, y\rangle ,

contradicting the earlier established fact that y maximizes the product \langle x, u\rangle over
u \in \scrF , \| u\| = 1.

From (4.10) and the fact that y \in \scrF , we have

(4.11) x+ ty = x - z\underbrace{}  \underbrace{}  
\in  - \scrF \ast 

+ z + ty\underbrace{}  \underbrace{}  
\in \scrF 

.

From (4.10) and y = z/\| z\| , we have \langle x  - z, z + ty\rangle = 0. By the properties of the
Moreau decomposition and since (4.11) holds, z+ ty must be the projection of x+ ty
onto \scrF . We conclude that if x \not \in  - \scrF \ast and t \geq 0, we have

(4.12) dist(x+ ty,\scrF ) = \| x+ ty  - (z + ty)\| = \| x - z\| = dist(x,\scrF ).

In the remaining case when x \in  - \scrF \ast , the projection of x onto \scrF is zero, and

(4.13) dist(x,\scrF ) = \| x\| .

1If ri\scrF \cap ri\scrF \ast = \emptyset , there is a hyperplane passing through the origin that properly separates \scrF and
\scrF \ast . Letting z denote the (nonzero) normal of this hyperplane, we may assume that \langle z, x\rangle \leq \langle z, y\rangle 
for every x \in \scrF \ast , y \in \scrF . Therefore, z \in \scrF \ast \cap ( - \scrF ) = \{ 0\} , which is a contradiction.
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For every y as in (4.7) and every u \in \scrF , we have

(4.14) \langle x, y\rangle \| u\| \geq \langle x, u\rangle .

Using (4.14) and the fact that \langle x, y\rangle \leq 0 (since x \in  - \scrF \ast ), for all 0 \leq t \leq  - \langle x, y\rangle and
all u \in \scrF such that \langle y, u\rangle \geq 0

\langle x+ ty, u\rangle = \langle x, u\rangle + t\langle y, u\rangle \leq \langle x, y\rangle \| u\|  - \langle x, y\rangle \langle y, u\rangle = \langle x, y\rangle (\| u\|  - \langle y, u\rangle ) \leq 0.

On the other hand, for all u \in \scrF such that \langle u, y\rangle < 0

\langle x+ ty, u\rangle = \langle x, u\rangle + t\langle y, u\rangle \leq \langle x, y\rangle \| u\| \leq 0.

Hence, 0 is the projection of x+ ty onto \scrF .
For t >  - \langle x, y\rangle let pt = \langle x, y\rangle y + ty. We will show that pt is the projection of

x+ ty onto \scrF . We have

x+ ty = (x - \langle x, y\rangle y) + pt = (x - \langle x, y\rangle y) + \langle x, y\rangle y + ty\underbrace{}  \underbrace{}  
\in \scrF 

.

A computation using the fact that \| y\| = 1 shows that \langle x - \langle x, y\rangle y, pt\rangle = 0. Therefore,
by the properties of the Moreau decomposition, in order to show that pt is the desired
projection, it suffices to check that x - \langle x, y\rangle y \in  - \scrF \ast . So let u \in \scrF . In view of (4.14)
and \langle x, y\rangle \leq 0, we have

\langle x - \langle x, y\rangle y, u\rangle \leq \| u\| \langle x, y\rangle  - \langle x, y\rangle \langle y, u\rangle 
\leq \langle x, y\rangle (\| u\|  - \langle y, u\rangle )
\leq 0;

hence, pt is indeed the projection of x+ ty onto \scrF .
So now we know that if 0 \leq t \leq  - \langle x, y\rangle , then 0 is the projection of x + ty onto

\scrF . Otherwise, if t >  - \langle x, y\rangle , then pt is the projection of x+ ty onto \scrF . Then, from
(4.9), for every y as in (4.7) we have \langle x, y\rangle \geq \alpha \| x\| . With that and recalling (4.13),
whenever 0 \leq t \leq  - \langle x, y\rangle we have

dist(x+ ty,\scrF ) = \| x+ ty\| 
\geq min

0\leq t\leq  - \langle x,y\rangle 
\| x+ ty\| 2

= \| x\| 2  - \langle x, y\rangle 2

\geq \| x\| 2(1 - \alpha 2)

= dist(x,\scrF )2(1 - \alpha 2).

On the other hand, if t >  - \langle x, y\rangle , we have

dist(x+ ty,\scrF )2 = \| x+ ty  - pt\| 2 = \| x - \langle x, y\rangle y\| 2 = \| x\| 2  - \langle x, y\rangle 2

\geq \| x\| 2(1 - \alpha 2) = dist(x,\scrF )2(1 - \alpha 2).

In combination with (4.12), we deduce that for all x \in span\scrF and all t \geq 0

\beta dist(x+ ty,\scrF ) \geq dist(x,\scrF ),

where \beta = max\{ 1,
\sqrt{} 

1/(1 - \alpha 2)\} .
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Theorem 4.5 (from compact amenable slices to amenable cones). Let C be a
compact convex set contained in the hyperplane

H = \{ x | \langle e, x\rangle = 1\} ,

where e is some nonzero vector in \scrE . If C is amenable, then its conic hull \scrK = coneC
is also amenable.

Proof. Let \scrF be a face of \scrK . Our goal is to show that there exists a constant \gamma 
such that

(4.15) dist(x,\scrF ) \leq \gamma dist(x,\scrK ) \forall x \in span\scrF .

Case 1: dim\scrF = 0. The statement is trivial for \scrF = \{ 0\} , since in this case
span\scrF = \scrF .

Case 2: dim\scrF = 1. If \scrF is one-dimensional and \scrK is pointed, we have \scrF =
cone\{ z\} for some z \in \scrE , \| z\| = 1, and  - z /\in \scrK . Hence

\gamma := dist( - z,\scrK ) > 0.

In this case for any x \in span\scrF there is some \lambda \in \BbbR such that x = \lambda z. Whenever
\lambda \geq 0, we have \lambda x \in F \in \scrK , and there is nothing to prove. If \lambda < 0, then

dist(x,\scrF ) = \| x\| = | \lambda | , dist(x,\scrK ) = | \lambda | dist( - z,\scrK ) = | \lambda | \gamma .

Hence we have dist(x,\scrF ) \leq \gamma dist(x,\scrK ) for all x \in span\scrF .

Case 3: dim\scrF \geq 2. It remains to consider the case when dimF \geq 2. There
exists a face E of C such that

\scrF = coneE, aff E = span\scrF \cap H.

Since C is amenable and compact, there exists \kappa > 0 such that

(4.16) dist(x,E) \leq \kappa dist(x,C) \forall x \in aff E.

By Proposition 4.4 there exists \beta > 0 such that for any y defined by (4.7) we have

(4.17) dist(x+ ty,\scrK ) \leq dist(x,\scrK ), dist(x,\scrF ) \leq \beta dist(x+ ty,\scrF ) \forall t \geq 0.

Furthermore, since C is compact, there is an r > 0 such that

(4.18) \| u\| \leq r \forall u \in C.

Fix x \in span\scrF . Choose any y satisfying (4.7). Since y \in \scrK and \| y\| = 1, we have
y = \lambda v for some v \in C and \lambda > 0. Hence \langle e, y\rangle = \lambda \langle e, v\rangle = \lambda > 0. Choose any t such
that

t > max

\biggl\{ 
0, - \langle e, x\rangle 

\langle e, y\rangle 
, - \langle x, y\rangle 

\biggr\} 
;

then for \=x = x+ ty we have \langle e, \=x\rangle > 0 and

\langle \=x, y\rangle = \langle x+ ty, y\rangle = \langle x, y\rangle + t\| y\| 2 > 0,

ensuring that \=x /\in  - \scrK \ast .
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Let x\prime = 1
\langle e,\=x\rangle \=x. Then \langle x\prime , e\rangle = 1, so x\prime \in H, and also x\prime /\in  - \scrK \ast , since \=x /\in  - \scrK \ast 

and \langle e, \=x\rangle > 0. We have

(4.19) dist(\=x,\scrF ) = \langle e, \=x\rangle dist(x\prime ,\scrF ), dist(\=x,\scrK ) = \langle e, \=x\rangle dist(x\prime ,\scrK ).

Since x\prime \in H \setminus  - \scrK \ast , we can apply Proposition 4.2 to obtain

(4.20) dist(x\prime , C) \leq \| e\| r dist(x\prime ,\scrK ),

where r comes from (4.18).
From E \subseteq \scrF we obtain

(4.21) dist(x\prime ,\scrF ) \leq dist(x\prime , E).

We have, collecting (4.17), (4.19), and (4.21),

(4.22) dist(x,\scrF ) \leq \beta dist(\=x,\scrF ) = \beta \langle e, \=x\rangle dist(x\prime ,\scrF ) \leq \beta \langle e, \=x\rangle dist(x\prime , E).

Likewise, from (4.17), (4.19), and (4.20)

(4.23) dist(x,\scrK ) \geq dist(\=x,\scrK ) = \langle e, \=x\rangle dist(x\prime ,\scrK ) \geq \langle e, \=x\rangle 
\| e\| r

dist(x\prime , C).

Observing that x\prime \in aff E = H \cap span\scrF and combining (4.16), (4.22), and (4.23), we
have

dist(x,\scrF ) \leq \beta \langle e, \=x\rangle dist(x\prime , E) \leq \kappa \beta \langle e, \=x\rangle dist(x\prime , C) \leq \kappa \beta r\| e\| dist(x,\scrK ).

We conclude that (4.15) is satisfied with \gamma = \beta \kappa r\| e\| .

5. A nice cone that is not amenable. In this section, we produce an explicit
example of a closed convex cone in the four-dimensional Euclidean space that is nice
but not amenable.

Let \alpha : [0, 2\pi ] \rightarrow \BbbR 3, \beta : [0, 2\pi ] \rightarrow \BbbR 3, and \gamma : [0, \pi ] \rightarrow \BbbR 3 be defined by

(5.1)

\alpha (t) = (cos t, sin t, 1),

\beta (t) = (cos t, sin t, - 1),

\gamma (t) =

\biggl( 
2 cos(2t) - 1, 2 sin(2t),

9

8
cos t - 1

8
cos(3t)

\biggr) 
.

Throughout this section we use the notation \alpha , \beta , and \gamma to denote the maps
defined in (5.1) and also to denote the sets of points \alpha ([0, 2\pi ]), \beta ([0, 2\pi ]), and \gamma ([0, \pi ]).
The intended meaning should be clear from the context.

We let \scrK = cone(C \times \{ 1\} ), with C := conv(\alpha \cup \beta \cup \gamma ). The set C is shown in
Figure 3.

In the next subsection we will prove the following two propositions.

Proposition 5.1. The cone \scrK = cone(C \times \{ 1\} ) is nice.

Proposition 5.2. The cone \scrK is not amenable.

With that, we have the following theorem.

Theorem 5.3. There exists a nice cone \scrK \subseteq \BbbR 4 that is not amenable.

Proof of Theorem 5.3. The proof follows directly from Propositions 5.1 and 5.2.
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Fig. 3. The set C is the convex hull of the three curves shown in black.

5.1. Niceness.

Proposition 5.4. Extreme points of C are precisely \alpha \cup \beta \cup \gamma . Every extreme
point is exposed.

Proof. From the definition of C we have extC \subseteq \alpha \cup \beta \cup \gamma . Also note that
\gamma (0) = \alpha (0) = \alpha (2\pi ) and \gamma (2\pi ) = \beta (0) = \beta (2\pi ). We will first show that for every
t \in (0, 2\pi ) the point \gamma (t) is exposed, and then that each point on \alpha and \beta is also
exposed.

Since the projection of \gamma onto the xy-plane is the circle of radius 2 centered at
( - 1, 0), every line that exposes points on this circle as faces of the relevant disk lifts
to a plane that likewise exposes individual points \gamma (t) for t \in (0, 2\pi ).

The points \alpha (0) = \alpha (2\pi ) and \beta (0) = \beta (2\pi ) are exposed by any plane that exposes
them as faces of the cylinder S = \{ (x, y, z) | x2+(y - 1)2 \leq 4, - 1 \leq z \leq 1\} that includes
C as its subset.

For the remaining points on \alpha and \beta we first observe that due to symmetry it
is sufficient to show that \alpha (t) is exposed for all t \in (0, 2\pi ) (indeed, observe that the
linear isometry T (x, y, z) = (x, - y, - z) maps the set C onto itself, swapping the bases:
we have \beta (2\pi  - t) = T (\alpha (t)) for t \in [0, 2\pi ] and \gamma (\pi  - t) = T (\gamma (t)) for t \in [0, \pi ]). The
exposing normals have the expression p(t) = (cos t, sin t, u(t)), where u(t) is chosen
in such a way that all points of \alpha , \beta , \gamma except for \alpha (t) lie in the negative half-space
defined by the plane via \alpha (t) with positive normal p(t). Explicitly, the following
relations must be satisfied:

(5.2) \langle p(t), \alpha (s)\rangle < \langle p(t), \alpha (t)\rangle \forall s \in [0, 2\pi ] \setminus \{ t\} , \forall t \in (0, 2\pi );

(5.3) \langle p(t), \beta (s)\rangle < \langle p(t), \alpha (t)\rangle \forall s \in [0, 2\pi ], \forall t \in (0, 2\pi );

(5.4) \langle p(t), \gamma (s)\rangle < \langle p(t), \alpha (t)\rangle \forall s \in [0, 2\pi ], \forall t \in (0, 2\pi ).

Observe that (5.2) can be explicitly written as

cos t cos s+ sin t sin s+ u(t) < 1 + u(t) \forall s \in [0, 2\pi ] \setminus \{ t\} , \forall t \in (0, 2\pi ),

or equivalently cos(t - s) < 1. Since s - t \in ( - 2\pi , 0)\cup (0, 2\pi ), this is satisfied for any
choice of the function u.
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From (5.3) we have the requirement

u(t) >
cos(t - s) - 1

2
.

Since cos(t - s) - 1 \leq 0, it is sufficient to require that u(t) > 0.
Finally, equation (5.4) can be written explicitly as

(1 - z(s))u(t) > 2 cos(t - s) - cos t - 1,

where z(s) = 9
8 cos s  - 1

8 cos(3s) is the last component of \gamma (s). For s = 0 this is
satisfied trivially, and for s \not = 0 we have

u(t) >
2 cos(t - s) - cos t - 1

1 - z(s)
.

The function on the right-hand side is continuous on (0, 2\pi ] and goes to  - \infty when
s \rightarrow 0+. Hence it must attain a maximum on (0, 2\pi ]. We can set u(t) to be positive
and larger than this maximum. We conclude that any point on the curve \alpha is an
exposed face of C.

Proposition 5.5. The only two-dimensional faces of C are the disk faces

F\alpha := conv\alpha , F\beta = conv \beta .

These faces are exposed.

Proof. We first show that F\alpha and F\beta are exposed faces of C. Observe that

\langle \alpha (t), (0, 0, 1)\rangle = 1 \forall t \in [0, 2\pi ];

\langle \beta (t), (0, 0, 1)\rangle =  - 1 < 1 \forall t \in [0, 2\pi ];

\langle \gamma (t), (0, 0, 1)\rangle < 1 \forall t \in (0, 2\pi ).

We deduce that the plane H defined by z = 1 supports C, and that (invoking Propo-
sition 5.4) extC \cap H = \alpha ; hence, conv\alpha is an exposed face of C. The proof for F\beta 

and the plane z =  - 1 is analogous.
To show that there are no other two-dimensional faces, assume that F is a two-

dimensional face of C. Then F must contain at least three affinely independent points
of extC = \alpha \cup \beta \cup \gamma (see Proposition 5.4). In the case when at least two of these
points belong to either \alpha or \beta , the line segment connecting these two points intersects
the relative interior of one of the disk faces, and hence the entire face F must include
this disk face, which means that the face F coincides with either F\alpha or F\beta . Therefore,
for F to be different from F\alpha or F\beta each of the curves \alpha and \beta can have at most one
of these three affinely independent points.

Suppose that \alpha and \beta contain at least one point each, and consider the cylinder
conv(\alpha \cup \beta ) that is a subset of C. Note that since the interior of this cylinder is
nonempty, the set C is also three-dimensional. If these points have a different projec-
tion onto the xy plane, then the line segment connecting them intersects the interior
of the aforementioned cylinder; hence, it intersects the interior of C, and the face F
has to be three-dimensional, a contradiction.

If these two points correspond to the same value of the parameter t, then any
supporting plane to C that contains these two points must also be supporting to the
cylinder. The only one such supporting plane that does not cut through the rest of
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the set C is x = 2, corresponding to the value t = 0. This plane only contains two
points of extC, \alpha (0) = \gamma (0) and \beta (0) = \gamma (2\pi ); hence, this plane cannot be exposing
a two-dimensional face.

We conclude that at most one of the three points lies on \alpha \cup \beta , and hence at least
two different points must be on \gamma \setminus (\alpha \cup \beta ). Suppose that these points are \gamma (t) and
\gamma (s), where 0 < t < s < 2\pi . We will show that this arrangement is also impossible.

Assume the contrary. Then \gamma (t) and \gamma (s) belong to some two-dimensional face
F \trianglelefteq C, and there must be a plane exposing F ; this plane must contain these two
points. This plane must also contain the tangent lines \gamma (t)+\BbbR \gamma \prime (t) and \gamma (s)+\BbbR \gamma \prime (s).
This is only possible if the vectors \gamma (t) - \gamma (s), \gamma \prime (t), \gamma \prime (s) are linearly dependent.

Let
M =

\bigl[ 
\gamma (t) - \gamma (s) \gamma \prime (t) \gamma \prime (s)

\bigr] 
.

We would like to understand when this vanishes for 0 < t < s < \pi . After the change
of variables x = (s+ t)/2 and y = (s - t)/2,

det(M) = - 32 cos(y) sin(x) sin(y)4 [6 + 3 cos(2x) + cos(2(x - y))

+ cos(2y) + cos(2(x+ y))] .

Furthermore, we have that

6 + 3 cos(2x) + cos(2(x - y)) + cos(2y) + cos(2(x+ y))

= 2 + 4 cos(x)2 + 6 cos(x)2 cos(y)2 + 2 sin(x)2 sin(y)2

\geq 2 for all x, y.

Therefore, the only way that det(M) can vanish is if either cos(y) = 0 or sin(x) = 0
or sin(y) = 0.

\bullet sin(y) = 0 if and only if s - t is an integer multiple of 2\pi . Since s, t \in (0, \pi ),
this is impossible.

\bullet sin(x) = 0 if and only if s+ t is an integer multiple of 2\pi . Since s, t \in (0, \pi ),
this is impossible.

\bullet cos(y) = 0 if and only if s - t is an odd multiple of \pi . Since s, t \in (0, \pi ), this
is impossible.

Proposition 5.6. The cone \scrK = cone(C \times \{ 1\} ) is facially exposed.

Proof. If C is facially exposed, then \scrK is also facially exposed (e.g., see [28,
Proposition 3.2]). Therefore it is sufficient to demonstrate that C is facially exposed.

We know from Propositions 5.4 and 5.5 that all zero-dimensional and two-
dimensional faces of the set C are exposed. If there is a one-dimensional face that is
not exposed, then it must be a subface of some two-dimensional face that is exposed;
see Proposition 2.1. This is impossible, since the only two-dimensional faces of C are
disks by Proposition 5.5 and so do not have one-dimensional subfaces. We conclude
that all one-dimensional faces are exposed.

The next result will be useful in what follows. It was proved within [24, Theo-
rem 3]. Recall that a face \scrF \trianglelefteq \scrK is properly minimal if it does not coincide with the
lineality space of \scrF and does not have any subfaces that strictly contain the lineality
space. For instance, properly minimal faces of a pointed cone are its extreme rays.

Theorem 5.7 (Pataki criterion). Let \scrK \subseteq \BbbR n be a closed convex cone. If \scrK 
is facially exposed, and for some face \scrF \trianglelefteq \scrK all properly minimal faces of \scrF \ast are
exposed, then \scrK \ast + \scrF \bot is closed.
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Proof of Proposition 5.1. The cone \scrK is facially exposed by Proposition 5.6. Since
every face \scrF of \scrK of dimension 2 and less is polyhedral (as is the case for any closed
convex cone), we have from Theorem 5.7 that \scrF \bot + \scrK \ast is closed for all such faces.
To finish the proof of facial dual completeness, it is sufficient to demonstrate that
\scrF \bot +\scrK \ast is closed for all three-dimensional faces \scrF of \scrK .

We know from Proposition 5.5 that the only three-dimensional faces of \scrK are
the lifts of the disk faces conv\alpha and conv \beta . We will show that \scrF \bot + \scrK \ast is closed
for \scrF = cone((conv\alpha ) \times \{ 1\} ). The proof for the second three-dimensional face is
analogous due to symmetry.

Let \~\scrK = cone\{ \~C \times \{ 1\} \} , where \~C = conv(\alpha \cup \beta ). Since \~\scrK \subseteq \scrK , we have \scrK \ast \subseteq \~\scrK \ast 

and
\scrK \ast + \scrF \bot \subseteq \~\scrK \ast + \scrF \bot .

We will show that \~\scrK \ast + \scrF \bot is closed and that \scrK \ast + \scrF \bot \supseteq \~\scrK \ast + \scrF \bot (and hence
\scrK \ast + \scrF \bot = \~\scrK \ast + \scrF \bot is closed).

We note that \~\scrK = \{ (a, b, c, t)  - t \leq c \leq t,
\surd 
a2 + b2 \leq t\} . Consider the face

\scrF = \{ (a, b, c, t) \in \~\scrK : c = t\} = \{ (a, b, t, t) :
\sqrt{} 

a2 + b2 \leq t\} ,

and note that \scrF \bot = span\{ (0, 0, 1, - 1)\} .
The dual cone of \~\scrK is

\~\scrK \ast = \{ (x, y, z, w) :
\sqrt{} 
x2 + y2 + | z| \leq w\} .

We can then directly compute \~\scrK \ast + \scrF \bot as

\~\scrK \ast + \scrF \bot = \{ (x, y, z, w) : \exists \mu \in \BbbR s.t.
\sqrt{} 
x2 + y2 + | z  - \mu | \leq w + \mu \} 

= \{ (x, y, z, w) : \exists \mu \in \BbbR s.t.
\sqrt{} 
x2 + y2 \leq (w + \mu ) + (z  - \mu ),\sqrt{} 

x2 + y2 \leq (w + \mu ) - (z  - \mu )\} 

= \{ (x, y, z, w) : \exists \mu \in \BbbR s.t.
\sqrt{} 
x2 + y2 \leq z + w,

\sqrt{} 
x2 + y2 \leq w  - z + 2\mu \} 

= \{ (x, y, z, w) :
\sqrt{} 

x2 + y2 \leq z + w\} .

This is the preimage of the second-order cone (which is closed) under the linear map
(x, y, z, w) \mapsto \rightarrow (x, y, z+w) and so is a closed set (another way to see this is to observe
that \~\scrK is a spectrahedron and \scrF is a face of \~\scrK ). It follows that \~\scrK \ast + \scrF \bot is closed.

We now aim to show that \~\scrK \ast + \scrF \bot \subseteq \scrK \ast + \scrF \bot . We do this by identifying a
particular set E \subseteq \scrK \ast and showing that an arbitrary element of the boundary of
\~\scrK \ast + \scrF \bot is contained in E + \scrF \bot .

Let p(t) = (cos(t), sin(t), u(t)) be the choice of exposing hyperplane for the point
(cos(t), sin(t), 1) from Proposition 5.4. We know that

\langle p(t), x\rangle \leq \langle p(t), (cos(t), sin(t), 1)\rangle = 1 + u(t) for all x \in C and all t \in [0, 2\pi ].

It then follows that ( - cos(t), - sin(t), - u(t), 1+ u(t)) \in \scrK \ast . Our aim is to show that
any element of \~\scrK \ast + \scrF \bot can be expressed in the form

\alpha ( - cos(t), - sin(t), - u(t), 1 + u(t)) + \beta (0, 0, 1, - 1)

for some t \in [0, 2\pi ], some \alpha \geq 0, and some \beta \in \BbbR . Let (x, y, z, w) be an arbitrary

boundary point of \~\scrK \ast +\scrF \bot ---in other words, an arbitrary point satisfying
\sqrt{} 

x2 + y2 =

D
ow

nl
oa

de
d 

01
/0

9/
23

 to
 1

17
.1

02
.1

84
.2

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

2370 B. F. LOUREN\c CO, V. ROSHCHINA, AND J. SAUNDERSON

z + w. Letting \alpha = z + w =
\sqrt{} 
x2 + y2 \geq 0, we can find t such that (x, y) =

\alpha ( - cos(t), - sin(t)). Furthermore, given that particular t, we can write\biggl[ 
z
w

\biggr] 
= (z + w)

\biggl[ 
 - u(t)
1 + u(t)

\biggr] 
+ (z + (z + w)u(t))

\biggl[ 
1
 - 1

\biggr] 
= \alpha 

\biggl[ 
 - u(t)
1 + u(t)

\biggr] 
+ \beta 

\biggl[ 
1
 - 1

\biggr] 
,

where \beta = (z + (z +w)u(t)). Overall, then, we see that (x, y, z, w) \in \scrK \ast +\scrF \bot . Since
(x, y, z, w) is an arbitrary element of the boundary of \~\scrK \ast + \scrF \bot , we have shown that
the boundary of \~\scrK \ast + \scrF \bot is contained in \scrK \ast + \scrF \bot . By convexity, it follows that
\~\scrK \ast + \scrF \bot \subseteq \scrK \ast + \scrF \bot .

5.2. Nonamenability.

Proof of Proposition 5.2. From Proposition 3.4 the intersection of two amenable
sets is amenable. Our goal is to show that the set C is not amenable. Since C is the
intersection of an affine subspace with \scrK , this shows \scrK is not amenable.

By Proposition 5.5, the disk F = conv\alpha is a face of C. We will apply the definition
of amenability (Definition 3.1) to the bounded set B = \{ (x, y, 1) : (x - 1)2 + y2 \leq 1\} .

Let w(t) = (2 cos(2t) - 1, 2 sin(2t), 1), which lies in aff(F )\cap B for sufficiently small
t \geq 0. It is enough to show that

dist(w(t), C)2

dist(w(t), F )2
\rightarrow 0 as t \rightarrow 0+.

Now, using the Taylor expansion, we have

dist(w(t), C)2 \leq dist(w(t), \gamma (t))2

= (1 - (9/8) cos(t) + (1/8) cos(3t))2

=
9

64
t8 +O(t10).

On the other hand, noting that (2 cos(2t)  - 1)2 + (2 sin(2t))2 = 5  - 4 cos(2t), we see
that

dist(w(t), F )2 = min
u2+v2=1

(u - (2 cos(2t) - 1))2 + (v  - 2 sin(2t))2

= (1 - 
\sqrt{} 
5 - 4 cos(2t))2 = 16t4 +O(t6).

It then follows that

lim
t\rightarrow 0

dist(w(t), C)2

dist(w(t), F )2
\leq lim

t\rightarrow 0

9
64 t

8 +O(t10)

16t4 +O(t6)
= 0.

We deduce that there is no constant \kappa satisfying the definition of amenability
for the set C and its face F , and hence by the earlier observation the cone \scrK is not
amenable.

6. Amenability and projectionally exposed cones. The current situation
is that the different notions of exposedness described in Proposition 2.3 all coincide in
dimension three, and there are examples in dimension four of facially exposed cones
that are not nice [28] and nice cones that are not amenable (section 5).

The next natural question would be to clarify the relationship between amenabil-
ity and projectional exposedness. In this section, we will see, however, that if dim\scrK \leq 
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4, amenability implies projectional exposedness, so any counterexample can only ap-
pear in dimension five or more.

We start with the following technical criterion for projectional exposedness by
Sung and Tam. For \scrF \trianglelefteq \scrK , we define its conjugate face as \scrF \Delta := \scrK \ast \cap \scrF \bot .

Theorem 6.1 (Sung and Tam's criterion, item (a) of Theorem 3.2 in [32]). Let \scrK 
be a pointed full-dimensional closed convex cone and \scrF \trianglelefteq \scrK be a face of codimension
1. Let w be such that \scrF \Delta = \{ \alpha w | \alpha \geq 0\} . Then, \scrF is a projectionally exposed face
if and only if w is not the limit of a convergent sequence \{ wk\} \subseteq \scrK \ast such that the wk

generate extreme rays distinct from \scrF \Delta .

Theorem 6.2. Let \scrK be a full-dimensional pointed closed convex cone. If \scrF \trianglelefteq \scrK 
is an amenable face of codimension 1, then \scrF is projectionally exposed.

Proof. \scrK and span\scrF are boundedly linearly regular by Proposition 3.2. By [3,
Theorem 10], this means that the so-called property (G) holds for  - \scrK \ast and \scrF \bot . That
is, denoting the unit ball in \scrE by U = \{ x | \| x\| \leq 1\} , there exists \alpha > 0 such that

U \cap ( - \scrK \ast + \scrF \bot ) \subseteq \alpha (U \cap ( - \scrK \ast ) + U \cap \scrF \bot ).

This implies that

(6.1) U \cap (\scrK \ast + \scrF \bot ) \subseteq \alpha (U \cap \scrK \ast + U \cap \scrF \bot ).

Let w be such that \| w\| = 1 and \scrF \Delta = \{ \beta w | \beta \geq 0\} , and suppose that \scrF is not
projectionally exposed. Then, by Theorem 6.1, there exists a sequence \{ wk\} \subseteq \scrK \ast 

such that wk \rightarrow w and the wk generate extreme rays that are all distinct from \scrF \Delta .
Because \scrF has codimension 1, \scrF \bot is generated by w. Therefore, (6.1) implies

(6.2) U \cap (\scrK \ast + \scrF \bot ) \subseteq \alpha (U \cap \scrK \ast + \{ \beta w | \beta \in [ - 1, 1]\} ).

Since 2\alpha (wk  - w) \in \scrK \ast + \scrF \bot and wk  - w \rightarrow 0, in view of (6.2), for sufficiently large
k, there exist yk \in U \cap \scrK \ast and \beta k \in [ - 1, 1] such that 2\alpha (wk  - w) = \alpha (yk + \beta kw).
Equivalently,

(6.3) wk =
yk
2

+

\biggl( 
1 +

\beta k

2

\biggr) 
w.

Since \beta k \in [ - 1, 1], we have (1 - \beta k

2 ) > 0. So, (6.3) implies that w lies in the extreme
ray generated by wk (for sufficiently large k), which is a contradiction. Therefore, the
sequence \{ wk\} cannot exist, and \scrF must be projectionally exposed.

Next, we recall that a closed convex cone \scrK is projectionally exposed if and only
if its ``pointed component"" \scrK \cap lin\scrK \bot is projectionally exposed; see [32, Lemma 2.4]
and its proof. We also have the following well-known fact.

Lemma 6.3 (folklore2). \scrF \trianglelefteq \scrK is facially exposed if and only if \scrF = \scrF \Delta \Delta .

2This fact is referenced in several articles, but it is not completely trivial to find a proof. Barker
used the condition \scrF = \scrF \Delta \Delta as the definition of exposed face (see [1, Definition 2.A.9]) and men-
tioned that this coincides with the definition using exposing hyperplanes. Barker's definition was
adopted in some works on convex cones in the 1980s, e.g., [34, 32]. We also noted that Br{\e}ndsted's
book is sometimes mentioned as reference for the proof, but, actually, the proof is given for compact
convex sets only; see [6, Theorem 6.7].
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Proof. We note that \scrF \Delta is always an exposed face of \scrK \ast because if x \in ri\scrF ,
then we have \scrF \Delta = \scrK \ast \cap \{ x\} \bot . Therefore, if \scrF = \scrF \Delta \Delta , then \scrF is facially exposed.
Conversely, suppose \scrF is facially exposed, and let s \in \scrK \ast be such that \scrF = \scrK \cap \{ s\} \bot .
Then, s \in \scrF \Delta . Let \^\scrF be the minimal face of \scrK \ast containing s; we have s \in ri \^\scrF and
\^\scrF \trianglelefteq \scrF \Delta . Therefore, \scrF \Delta \Delta \trianglelefteq \^\scrF \Delta = \scrF . Since we always have \scrF \trianglelefteq \scrF \Delta \Delta for any face,
this shows that \scrF \Delta \Delta = \scrF .

Corollary 6.4. If \scrK \subseteq \scrE is a closed convex cone of dimension dim\scrK \leq 4, then
\scrK is amenable if and only if it is projectionally exposed.

Proof. By Proposition 2.3, projectionally exposed cones are amenable, and the
converse holds if dim\scrK \leq 3. So, we assume that dim\scrK = 4 and that \scrK is amenable.
Then, span \scrK is linearly isomorphic to \BbbR 4, and the same isomorphism shows that \scrK 
is linearly isomorphic to a cone \^\scrK \subseteq \BbbR 4 which is amenable (by item (iii) of Proposi-

tion 3.4) and full-dimensional. Let \widetilde \scrK := \^\scrK \cap (lin \^\scrK )\bot . By item (v) of Proposition 3.4,\widetilde \scrK is amenable. Furthermore, \scrK is projectionally exposed if and only if \widetilde \scrK is pro-
jectionally exposed, because \^\scrK and \scrK are linearly isomorphic and \widetilde \scrK is the pointed
component of \^\scrK .\widetilde \scrK is an amenable pointed full-dimensional closed convex cone, and we will show
that it is also projectionally exposed. For that, let \scrF \trianglelefteq \widetilde \scrK . If \scrF = \{ 0\} or \scrF = \widetilde \scrK ,

then the zero map and the identity map are projections that map \widetilde \scrK onto \{ 0\} and \widetilde \scrK ,
respectively. Next, we consider three cases.

Case 1: dim\scrF = 1. In this case, \scrF can be written as \scrF = \{ \alpha x | \alpha \geq 0\} for some

nonzero x \in \widetilde \scrK . Let z \in \widetilde \scrK \ast be such that \langle x, z\rangle = 1. At least one such z must exist

because otherwise we would have x \in \widetilde \scrK \ast \bot = lin \widetilde \scrK = \{ 0\} . With that, the projection

defined by P = xzT satisfies P (\widetilde \scrK ) = \scrF .

Case 2: dim\scrF = 2. The argument is essentially the same as [32, Corollary 4.8].
\scrF can be written as \scrF = \{ \alpha x+ \beta y | \alpha \geq 0, \beta \geq 0\} , where x and y generate different

extreme rays of \widetilde \scrK denoted respectively by \scrF x and \scrF y.

Since \widetilde \scrK is facially exposed, \scrF \Delta 
x = \widetilde \scrK \ast \cap \{ x\} \bot and \scrF \Delta 

y = \widetilde \scrK \ast \cap \{ y\} \bot must be

different faces of \widetilde \scrK \ast by Lemma 6.3. Furthermore, \scrF \Delta 
x and \scrF \Delta 

y are not contained in

each other. In particular, we can find z1 \in \scrF \Delta 
x that does not belong to \scrF \Delta 

y and, also,

z2 \in \scrF \Delta 
y that does not belong to \scrF \Delta 

x . Rescaling z1, z2 if necessary, we have

\langle x, z1\rangle = 0, \langle x, z2\rangle = 1, \langle y, z1\rangle = 1, \langle y, z2\rangle = 0.

Therefore, the projection defined by P = xzT2 + yzT1 maps \widetilde \scrK to \scrF .

Case 3: dim\scrF = 3. This case follows by Theorem 6.2.

7. Open problems. In this section we outline some open questions related to
the geometry of convex cones, motivated by our study of amenability.

7.1. Characterization of amenability and niceness via slices. The polar
of the slice C of \scrK studied in section 5 is shown in Figure 4.

This set appears to have a peculiar arrangement of faces adjacent to the two tips
(dual to the disk faces of C). The cone of feasible directions at each tip appears to be
closed; however, the set lacks the exactness of tangent approximation (ETA) property
(see [20]) at these points. In other words, there is no neighborhood in which the
set coincides with its tangent. (Also note that there are sequences of extreme points
converging to the tips, and hence the conditions of Theorem 6.1 are not satisfied: we
immediately see from this image that the relevant cone is not projectionally exposed.)
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Fig. 4. The polar of the set C from section 5.

On the other hand, it appears---based on this and other known four-dimensional
examples---that niceness in \BbbR 4 corresponds to the closedness of the set of feasible
directions at extreme points of the polar that are dual to the two-dimensional faces
of the primal slice. We wonder if it is possible to obtain a general characterization of
(and distinguish between) niceness, amenability, and projectional exposedness using
these kinds of tangential properties pertaining to the polars of slices.

7.2. Projectionally exposed cones. It was shown in [19] that projectionally
exposed cones are amenable; however, we do not know whether the converse is false.
We failed to construct an example of an amenable cone that is not projectionally
exposed. In view of Corollary 6.4, if such an example exists, it must be of dimension
at least five.

In addition, as seen in Table 1, it is unknown whether homogeneous cones are
projectionally exposed and whether projectional exposedness is preserved under in-
tersections. We note that a positive answer to the latter would imply projectional
exposedness of all spectrahedral cones, including all the homogeneous cones.

7.3. Tangentially and strongly tangentially exposed cones. It was shown
in [29] that necessary and sufficient conditions for niceness can be formulated using yet
another strengthening of the notion of facial exposedness. Specifically, if a cone \scrK is
nice, then the tangent cone to every face of \scrK is the intersection of the span of this face
with the tangent to the entire cone \scrK (this condition is called tangential exposure).
If this condition is satisfied for all tangent cones of \scrK , and recursively for all tangents
of tangents, then the cone is nice (this condition is called strong tangential exposure,
and the higher-order tangents are called lexicographic tangents). It is unknown what
the relationship is between these tangential conditions and the notions of amenability
and projectional exposure.

Acknowledgment. We thank the referees and the associate editor for their
comments, which helped to improve the paper.
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